AIAS/1_image_sdks/text_recognition/ocr_sdk/README.md
2021-10-29 10:29:42 +08:00

5.5 KiB
Raw Blame History

文字识别OCR工具箱

文字识别OCR目前在多个行业中得到了广泛应用比如金融行业的单据识别输入餐饮行业中的发票识别 交通领域的车票识别,企业中各种表单识别,以及日常工作生活中常用的身份证,驾驶证,护照识别等等。 OCR文字识别是目前常用的一种AI能力。

OCR工具箱功能:

  1. 方向检测
  • 0度
  • 90度
  • 180度
  • 270度
    detect_direction
  1. 图片旋转

  2. 文字识别(提供三个模型)

  • mobile模型
  • light模型
  • 服务器端模型
  1. 版面分析支持5个类别, 用于配合文字识别,表格识别的流水线处理)
  • Text
  • Title
  • List
  • Table
  • Figure
  1. 表格识别
  • 生成html表格
  • 生成excel文件

运行OCR识别例子

1.1 文字方向检测:

  • 例子代码: OcrDetectionExample.java
  • 运行成功后,命令行应该看到下面的信息:
[INFO ] - Result image has been saved in: build/output/detect_result.png
[INFO ] - [
	class: "0", probability: 1.00000, bounds: [x=0.073, y=0.069, width=0.275, height=0.026]
	class: "0", probability: 1.00000, bounds: [x=0.652, y=0.158, width=0.222, height=0.040]
	class: "0", probability: 1.00000, bounds: [x=0.143, y=0.252, width=0.144, height=0.026]
	class: "0", probability: 1.00000, bounds: [x=0.628, y=0.328, width=0.168, height=0.026]
	class: "0", probability: 1.00000, bounds: [x=0.064, y=0.330, width=0.450, height=0.023]
]
  • 输出图片效果如下: detect_result

1.2 文字方向检测帮助类(增加置信度信息显示,便于调试):

  • 例子代码: OcrDetectionHelperExample.java
  • 运行成功后,命令行应该看到下面的信息:
[INFO ] - Result image has been saved in: build/output/detect_result_helper.png
[INFO ] - [
	class: "0 :1.0", probability: 1.00000, bounds: [x=0.073, y=0.069, width=0.275, height=0.026]
	class: "0 :1.0", probability: 1.00000, bounds: [x=0.652, y=0.158, width=0.222, height=0.040]
	class: "0 :1.0", probability: 1.00000, bounds: [x=0.143, y=0.252, width=0.144, height=0.026]
	class: "0 :1.0", probability: 1.00000, bounds: [x=0.628, y=0.328, width=0.168, height=0.026]
	class: "0 :1.0", probability: 1.00000, bounds: [x=0.064, y=0.330, width=0.450, height=0.023]
]
  • 输出图片效果如下: detect_result_helper

2. 图片旋转:

每调用一次rotateImg方法会使图片逆时针旋转90度。

  • 例子代码: RotationExample.java
  • 旋转前图片: ticket_0
  • 旋转后图片效果如下: rotate_result

3. 文字识别:

再使用本方法前,请调用上述方法使图片文字呈水平(0度)方向。

  • 例子代码: LightOcrRecognitionExample.java
  • 运行成功后,命令行应该看到下面的信息:
[INFO ] - [
	class: "你", probability: -1.0e+00, bounds: [x=0.319, y=0.164, width=0.050, height=0.057]
	class: "永远都", probability: -1.0e+00, bounds: [x=0.329, y=0.349, width=0.206, height=0.044]
	class: "无法叫醒一个", probability: -1.0e+00, bounds: [x=0.328, y=0.526, width=0.461, height=0.044]
	class: "装睡的人", probability: -1.0e+00, bounds: [x=0.330, y=0.708, width=0.294, height=0.043]
]
  • 输出图片效果如下: ocr_result

4. 版面分析:

  • 运行成功后,命令行应该看到下面的信息:
[INFO ] - [
	class: "Text", probability: 0.98750, bounds: [x=0.081, y=0.620, width=0.388, height=0.183]
	class: "Text", probability: 0.98698, bounds: [x=0.503, y=0.464, width=0.388, height=0.167]
	class: "Text", probability: 0.98333, bounds: [x=0.081, y=0.465, width=0.387, height=0.121]
	class: "Figure", probability: 0.97186, bounds: [x=0.074, y=0.091, width=0.815, height=0.304]
	class: "Table", probability: 0.96995, bounds: [x=0.506, y=0.712, width=0.382, height=0.143]
]
  • 输出图片效果如下: layout

5. 表格识别:

  • 运行成功后,命令行应该看到下面的信息:
<html>
 <body>
  <table>
   <thead>
    <tr>
     <td>Methods</td>
     <td>R</td>
     <td>P</td>
     <td>F</td>
     <td>FPS</td>
    </tr>
   </thead>
   <tbody>
    <tr>
     <td>SegLink[26]</td>
     <td>70.0</td>
     <td>86.0</td>
     <td>770</td>
     <td>89</td>
    </tr>
    <tr>
     <td>PixelLink[4j</td>
     <td>73.2</td>
     <td>83.0</td>
     <td>77.8</td>
     <td></td>
    </tr>
...
   </tbody>
  </table> 
 </body>
</html>
  • 输出图片效果如下: table

  • 生成excel效果如下 excel

帮助

引擎定制化配置,可以提升首次运行的引擎下载速度,解决外网无法访问或者带宽过低的问题。
引擎定制化配置

官网:

官网链接

Git地址

Github链接
Gitee链接