mirror of
https://gitee.com/mymagicpower/AIAS.git
synced 2024-12-03 12:48:12 +08:00
139 lines
5.2 KiB
Markdown
139 lines
5.2 KiB
Markdown
|
|
### Download the model, place it in the models directory, and unzip
|
|
- Link: https://github.com/mymagicpower/AIAS/releases/download/apps/smart_construction_models.zip
|
|
|
|
### Smart Construction Detection SDK
|
|
Supported categories:
|
|
|
|
- person (human body)
|
|
- head (without safety helmet)
|
|
- helmet (with safety helmet)
|
|
|
|
### SDK Functionality
|
|
Construction safety detection, providing detection boxes and confidence levels.
|
|
|
|
- Provides three models:
|
|
- Small model (yolov5s 29.7M)
|
|
- Medium model (yolov5m 86.8M)
|
|
- Large model (yolov5l 190.8M)
|
|
-
|
|
|
|
### Run Small Model Example- Yolov5sExample
|
|
|
|
- Test image effect (only display safety helmet detection, filter out other categories for display, see code for details)
|
|
![small](https://aias-home.oss-cn-beijing.aliyuncs.com/AIAS/sec_sdks/images/helmet_head_person_s.jpeg)
|
|
|
|
### Run Medium Model Example- Yolov5mExample
|
|
|
|
- Test image effect
|
|
![medium](https://aias-home.oss-cn-beijing.aliyuncs.com/AIAS/sec_sdks/images/helmet_head_person_m.jpeg)
|
|
|
|
### Run Large Model Example- Yolov5lExample
|
|
|
|
- Test image effect
|
|
![large](https://aias-home.oss-cn-beijing.aliyuncs.com/AIAS/sec_sdks/images/helmet_head_person_l.jpeg)
|
|
|
|
|
|
After a successful run, the command line should display the following information:
|
|
```text
|
|
[INFO ] - [
|
|
class: "helmet", probability: 0.89502, bounds: [x=0.956, y=0.525, width=0.044, height=0.067]
|
|
class: "helmet", probability: 0.85951, bounds: [x=0.237, y=0.439, width=0.036, height=0.046]
|
|
class: "helmet", probability: 0.81705, bounds: [x=0.901, y=0.378, width=0.036, height=0.052]
|
|
class: "helmet", probability: 0.80817, bounds: [x=0.250, y=0.399, width=0.029, height=0.040]
|
|
class: "helmet", probability: 0.80528, bounds: [x=0.771, y=0.336, width=0.029, height=0.043]
|
|
]
|
|
```
|
|
|
|
|
|
### Open source algorithm
|
|
#### 1. Open source algorithm used by the SDK
|
|
- [Smart_Construction](https://github.com/PeterH0323/Smart_Construction)
|
|
|
|
#### 2. How to export the model?
|
|
- [how_to_convert_your_model_to_torchscript](http://docs.djl.ai/docs/pytorch/how_to_convert_your_model_to_torchscript.html)
|
|
|
|
- Export model (pytorch model is special, CPU&GPU models are not universal. So CPU and GPU need to be exported separately)
|
|
- torch.device('cpu')
|
|
- torch.device('gpu')
|
|
```text
|
|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
|
|
|
Usage:
|
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import torch
|
|
|
|
from utils.google_utils import attempt_download
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--weights', type=str, default='./helmet_head_person_s.pt', help='weights path')
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
opt = parser.parse_args()
|
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
|
print(opt)
|
|
|
|
# Input
|
|
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
|
|
|
|
# Load PyTorch model
|
|
attempt_download(opt.weights)
|
|
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
|
|
model.eval()
|
|
model.model[-1].export = False # set Detect() layer export=True
|
|
if img.ndimension() == 3:
|
|
img = img.unsqueeze(0)
|
|
y = model(img) # dry run
|
|
|
|
# TorchScript export
|
|
try:
|
|
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
|
ts = torch.jit.trace(model, img)
|
|
ts.save(f)
|
|
print('TorchScript export success, saved as %s' % f)
|
|
except Exception as e:
|
|
print('TorchScript export failure: %s' % e)
|
|
|
|
# # ONNX export
|
|
# try:
|
|
# import onnx
|
|
#
|
|
# print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
|
# f = opt.weights.replace('.pt', '.onnx') # filename
|
|
# model.fuse() # only for ONNX
|
|
# torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
|
# output_names=['classes', 'boxes'] if y is None else ['output'])
|
|
#
|
|
# # Checks
|
|
# onnx_model = onnx.load(f) # load onnx model
|
|
# onnx.checker.check_model(onnx_model) # check onnx model
|
|
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
|
# print('ONNX export success, saved as %s' % f)
|
|
# except Exception as e:
|
|
# print('ONNX export failure: %s' % e)
|
|
#
|
|
# # CoreML export
|
|
# try:
|
|
# import coremltools as ct
|
|
#
|
|
# print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
|
# # convert model from torchscript and apply pixel scaling as per detect.py
|
|
# model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
|
# f = opt.weights.replace('.pt', '.mlmodel') # filename
|
|
# model.save(f)
|
|
# print('CoreML export success, saved as %s' % f)
|
|
# except Exception as e:
|
|
# print('CoreML export failure: %s' % e)
|
|
|
|
# Finish
|
|
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
|
|
|
|
```
|