mirror of
https://gitee.com/mymagicpower/AIAS.git
synced 2024-11-30 03:08:24 +08:00
3.6 KiB
3.6 KiB
NDArray IO
1. 将数组保存到以 .npy 为扩展名的文件
- Python Numpy 可以读写磁盘上的文本数据或二进制数据。 NumPy 为 ndarray 对象引入了一个简单的文件格式:npy。 npy 文件用于存储重建 ndarray 所需的数据、图形、dtype 和其他信息。 常用的 IO 函数有: load() 和 save() 函数是读写文件数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npy 的文件中。 savez() 函数用于将多个数组写入文件,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 .npz 的文件中。
import numpy as np
a = np.array([1,2,3,4,5])
# 保存到 outfile.npy 文件上
np.save('outfile.npy',a)
# 我们可以查看文件内容:
$ cat outfile.npy
?NUMPYv{'descr': '<i8', 'fortran_order': False, 'shape': (5,), }
# 可以看出文件是乱码的,因为它们是 Numpy 专用的二进制格式后的数据。
- Java
NDArray a = manager.create(new int[]{1,2,3,4,5});
NDList encoded = new NDList(a);
encoded.encode();
OutputStream os = Files.newOutputStream(Paths.get("src/test/resources/outfile.npy"));
encoded.encode(os, true);
# 输出结果如下:
src/test/resources/outfile.npy
2. 读取 .npy 文件
- Python 我们可以使用 load() 函数来读取数据就可以正常显示了:
import numpy as np
b = np.load('outfile.npy')
print (b)
# 输出结果如下:
[1 2 3 4 5]
- Java
byte[] data = readFile("arr.npy");
NDList decoded = NDList.decode(manager, data);
NDArray array = decoded.get(0);
System.out.println(array.toDebugString(100, 10, 100, 100));
# 输出结果如下:
ND: (5) cpu() int32
[ 1, 2, 3, 4, 5]
3. 将多个数组保存到以 npz 为扩展名的文件
- Python numpy.savez() 函数将多个数组保存到以 npz 为扩展名的文件中。
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = np.arange(0, 1.0, 0.1)
np.savez("runoob.npz", a, b)
# 输出结果如下:
runoob.npz
- Java
a = manager.create(new int[][]{{1, 2, 3}, {4, 5, 6}});
NDArray b = manager.arange(0f, 1f, 0.1f);
encoded = new NDList(a, b);
encoded.encode();
os = Files.newOutputStream(Paths.get("src/test/resources/runoob.npz"));
encoded.encode(os, true);
# 输出结果如下:
src/test/resources/runoob.npz
4. 读取 npz 文件
- Python
import numpy as np
r = np.load("runoob.npz")
print(r.files) # 查看各个数组名称
print(r["arr_0"]) # 数组 a
print(r["arr_1"]) # 数组 b
# 输出结果如下:
['sin_array', 'arr_0', 'arr_1']
[[1 2 3]
[4 5 6]]
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
- Java
data = readFile("runoob.npz");
decoded = NDList.decode(manager, data);
a = decoded.get(0);
b = decoded.get(1);
System.out.println(a.toDebugString(100, 10, 100, 100));
System.out.println(b.toDebugString(100, 10, 100, 100));
# 输出结果如下:
ND: (2, 3) cpu() int32
[[ 1, 2, 3],
[ 4, 5, 6],
]
ND: (10) cpu() float32
[0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]