mirror of
https://gitee.com/mymagicpower/AIAS.git
synced 2024-12-02 04:08:21 +08:00
.. | ||
src | ||
pom.xml | ||
README.md |
文字识别(OCR)工具箱
文字识别(OCR)目前在多个行业中得到了广泛应用,比如金融行业的单据识别输入,餐饮行业中的发票识别, 交通领域的车票识别,企业中各种表单识别,以及日常工作生活中常用的身份证,驾驶证,护照识别等等。 OCR(文字识别)是目前常用的一种AI能力。
OCR工具箱功能:
- 方向检测
-
图片旋转
-
文字识别(提供三个模型)
- mobile模型
- light模型
- 服务器端模型
- 版面分析(支持5个类别, 用于配合文字识别,表格识别的流水线处理)
- Text
- Title
- List
- Table
- Figure
- 表格识别
- 生成html表格
- 生成excel文件
运行OCR识别例子
1.1 文字方向检测:
- 例子代码: OcrDetectionExample.java
- 运行成功后,命令行应该看到下面的信息:
[INFO ] - Result image has been saved in: build/output/detect_result.png
[INFO ] - [
class: "0", probability: 1.00000, bounds: [x=0.073, y=0.069, width=0.275, height=0.026]
class: "0", probability: 1.00000, bounds: [x=0.652, y=0.158, width=0.222, height=0.040]
class: "0", probability: 1.00000, bounds: [x=0.143, y=0.252, width=0.144, height=0.026]
class: "0", probability: 1.00000, bounds: [x=0.628, y=0.328, width=0.168, height=0.026]
class: "0", probability: 1.00000, bounds: [x=0.064, y=0.330, width=0.450, height=0.023]
]
2. 图片旋转:
每调用一次rotateImg方法,会使图片逆时针旋转90度。
3. 文字识别:
再使用本方法前,请调用上述方法使图片文字呈水平(0度)方向。
- 例子代码: LightOcrRecognitionExample.java
- 运行成功后,命令行应该看到下面的信息:
[INFO ] - [
class: "你", probability: -1.0e+00, bounds: [x=0.319, y=0.164, width=0.050, height=0.057]
class: "永远都", probability: -1.0e+00, bounds: [x=0.329, y=0.349, width=0.206, height=0.044]
class: "无法叫醒一个", probability: -1.0e+00, bounds: [x=0.328, y=0.526, width=0.461, height=0.044]
class: "装睡的人", probability: -1.0e+00, bounds: [x=0.330, y=0.708, width=0.294, height=0.043]
]
4. 版面分析:
- 运行成功后,命令行应该看到下面的信息:
[INFO ] - [
class: "Text", probability: 0.98750, bounds: [x=0.081, y=0.620, width=0.388, height=0.183]
class: "Text", probability: 0.98698, bounds: [x=0.503, y=0.464, width=0.388, height=0.167]
class: "Text", probability: 0.98333, bounds: [x=0.081, y=0.465, width=0.387, height=0.121]
class: "Figure", probability: 0.97186, bounds: [x=0.074, y=0.091, width=0.815, height=0.304]
class: "Table", probability: 0.96995, bounds: [x=0.506, y=0.712, width=0.382, height=0.143]
]
5. 表格识别:
- 运行成功后,命令行应该看到下面的信息:
<html>
<body>
<table>
<thead>
<tr>
<td>Methods</td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>FPS</td>
</tr>
</thead>
<tbody>
<tr>
<td>SegLink[26]</td>
<td>70.0</td>
<td>86.0</td>
<td>770</td>
<td>89</td>
</tr>
<tr>
<td>PixelLink[4j</td>
<td>73.2</td>
<td>83.0</td>
<td>77.8</td>
<td></td>
</tr>
...
</tbody>
</table>
</body>
</html>
模型列表:
table模型:
# Layout detection model URI
layout: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ppyolov2_r50vd_dcn_365e_publaynet_infer.zip
# Table detection model URI
table-en: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/en_table.zip
mobile模型:
# mobile detection model URI
检测: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_ppocr_mobile_v2.0_det_infer.zip
# mobile recognition model URI
识别: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_ppocr_mobile_v2.0_rec_infer.zip
light模型:
# light detection model URI
检测: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_PP-OCRv2_det_infer.zip
# light recognition model URI
识别: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_PP-OCRv2_rec_infer.zip
server模型:
# server detection model URI
检测: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_ppocr_server_v2.0_det_infer.zip
# server recognition model URI
识别: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_ppocr_server_v2.0_rec_infer.zip
v3模型:
# v3 detection model URI
检测: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_PP-OCRv3_det_infer.zip
# v3 recognition model URI
识别: https://aias-home.oss-cn-beijing.aliyuncs.com/models/ocr_models/ch_PP-OCRv3_rec_infer.zip
OCR图像预处理项目:
https://gitee.com/mymagicpower/AIAS/tree/main/1_image_sdks/imagekit_java
参考文章:
https://blog.csdn.net/dqcfkyqdxym3f8rb0/article/details/89819785#comments https://www.jianshu.com/p/9eb9d6f6f837 https://www.jianshu.com/p/173d329afa3a https://blog.csdn.net/zhouguangfei0717/article/details/103026139/ https://blog.csdn.net/u014133119/article/details/82222656 https://blog.csdn.net/wsp_1138886114/article/details/83374333 以上文章供参考,并不一定是最好的,建议根据相关关键字进一步去搜索。