Hunyuan3D-1/main.py

147 lines
5.2 KiB
Python
Raw Permalink Normal View History

2024-11-05 16:40:22 +08:00
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.l
import os
import torch
from PIL import Image
import argparse
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--use_lite", default=False, action="store_true"
)
parser.add_argument(
"--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str
)
parser.add_argument(
"--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str
)
parser.add_argument(
"--text2image_path", default="weights/hunyuanDiT", type=str
)
parser.add_argument(
"--save_folder", default="./outputs/test/", type=str
)
parser.add_argument(
"--text_prompt", default="", type=str,
)
parser.add_argument(
"--image_prompt", default="", type=str
)
parser.add_argument(
"--device", default="cuda:0", type=str
)
parser.add_argument(
"--t2i_seed", default=0, type=int
)
parser.add_argument(
"--t2i_steps", default=25, type=int
)
parser.add_argument(
"--gen_seed", default=0, type=int
)
parser.add_argument(
"--gen_steps", default=50, type=int
)
parser.add_argument(
"--max_faces_num", default=80000, type=int,
help="max num of face, suggest 80000 for effect, 10000 for speed"
)
parser.add_argument(
"--save_memory", default=False, action="store_true"
)
parser.add_argument(
"--do_texture_mapping", default=False, action="store_true"
)
parser.add_argument(
"--do_render", default=False, action="store_true"
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
assert not (args.text_prompt and args.image_prompt), "Text and image can only be given to one"
assert args.text_prompt or args.image_prompt, "Text and image can only be given to one"
# init model
rembg_model = Removebg()
image_to_views_model = Image2Views(device=args.device, use_lite=args.use_lite)
views_to_mesh_model = Views2Mesh(args.mv23d_cfg_path, args.mv23d_ckt_path, args.device, use_lite=args.use_lite)
if args.text_prompt:
text_to_image_model = Text2Image(
pretrain = args.text2image_path,
device = args.device,
save_memory = args.save_memory
)
if args.do_render:
gif_renderer = GifRenderer(device=args.device)
# ---- ----- ---- ---- ---- ----
os.makedirs(args.save_folder, exist_ok=True)
# stage 1, text to image
if args.text_prompt:
res_rgb_pil = text_to_image_model(
args.text_prompt,
seed=args.t2i_seed,
steps=args.t2i_steps
)
res_rgb_pil.save(os.path.join(args.save_folder, "img.jpg"))
elif args.image_prompt:
res_rgb_pil = Image.open(args.image_prompt)
# stage 2, remove back ground
res_rgba_pil = rembg_model(res_rgb_pil)
res_rgb_pil.save(os.path.join(args.save_folder, "img_nobg.png"))
# stage 3, image to views
(views_grid_pil, cond_img), view_pil_list = image_to_views_model(
res_rgba_pil,
seed = args.gen_seed,
steps = args.gen_steps
)
views_grid_pil.save(os.path.join(args.save_folder, "views.jpg"))
# stage 4, views to mesh
views_to_mesh_model(
views_grid_pil,
cond_img,
seed = args.gen_seed,
target_face_count = args.max_faces_num,
save_folder = args.save_folder,
do_texture_mapping = args.do_texture_mapping
)
# stage 5, render gif
if args.do_render:
gif_renderer(
os.path.join(args.save_folder, 'mesh.obj'),
gif_dst_path = os.path.join(args.save_folder, 'output.gif'),
)