mirror of
https://gitee.com/Tencent/Hunyuan3D-1.git
synced 2024-11-29 18:49:33 +08:00
494 lines
23 KiB
Python
494 lines
23 KiB
Python
|
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
|
||
|
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
||
|
|
||
|
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
# The below software and/or models in this distribution may have been
|
||
|
# modified by THL A29 Limited ("Tencent Modifications").
|
||
|
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
||
|
|
||
|
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
||
|
# except for the third-party components listed below.
|
||
|
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
||
|
# in the repsective licenses of these third-party components.
|
||
|
# Users must comply with all terms and conditions of original licenses of these third-party
|
||
|
# components and must ensure that the usage of the third party components adheres to
|
||
|
# all relevant laws and regulations.
|
||
|
|
||
|
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
||
|
# their software and algorithms, including trained model weights, parameters (including
|
||
|
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
||
|
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
||
|
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
||
|
|
||
|
import math
|
||
|
import numpy
|
||
|
import torch
|
||
|
import inspect
|
||
|
import warnings
|
||
|
from PIL import Image
|
||
|
from einops import rearrange
|
||
|
import torch.nn.functional as F
|
||
|
from diffusers.utils.torch_utils import randn_tensor
|
||
|
from diffusers.configuration_utils import FrozenDict
|
||
|
from diffusers.image_processor import VaeImageProcessor
|
||
|
from typing import Any, Callable, Dict, List, Optional, Union
|
||
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||
|
from diffusers import DDPMScheduler, EulerAncestralDiscreteScheduler, ImagePipelineOutput
|
||
|
from diffusers.loaders import (
|
||
|
FromSingleFileMixin,
|
||
|
LoraLoaderMixin,
|
||
|
TextualInversionLoaderMixin
|
||
|
)
|
||
|
from transformers import (
|
||
|
CLIPImageProcessor,
|
||
|
CLIPTextModel,
|
||
|
CLIPTokenizer,
|
||
|
CLIPVisionModelWithProjection
|
||
|
)
|
||
|
from diffusers.models.attention_processor import (
|
||
|
Attention,
|
||
|
AttnProcessor,
|
||
|
XFormersAttnProcessor,
|
||
|
AttnProcessor2_0
|
||
|
)
|
||
|
|
||
|
from .utils import to_rgb_image, white_out_background, recenter_img
|
||
|
|
||
|
|
||
|
EXAMPLE_DOC_STRING = """
|
||
|
Examples:
|
||
|
```py
|
||
|
>>> import torch
|
||
|
>>> from here import Hunyuan3d_MVD_Qing_Pipeline
|
||
|
|
||
|
>>> pipe = Hunyuan3d_MVD_Qing_Pipeline.from_pretrained(
|
||
|
... "Tencent-Hunyuan-3D/MVD-Qing", torch_dtype=torch.float16
|
||
|
... )
|
||
|
>>> pipe.to("cuda")
|
||
|
|
||
|
>>> img = Image.open("demo.png")
|
||
|
>>> res_img = pipe(img).images[0]
|
||
|
"""
|
||
|
|
||
|
def unscale_latents(latents): return latents / 0.75 + 0.22
|
||
|
def unscale_image (image ): return image / 0.50 * 0.80
|
||
|
|
||
|
|
||
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
||
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
||
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
||
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
||
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
||
|
return noise_cfg
|
||
|
|
||
|
|
||
|
|
||
|
class ReferenceOnlyAttnProc(torch.nn.Module):
|
||
|
# reference attention
|
||
|
def __init__(self, chained_proc, enabled=False, name=None):
|
||
|
super().__init__()
|
||
|
self.enabled = enabled
|
||
|
self.chained_proc = chained_proc
|
||
|
self.name = name
|
||
|
|
||
|
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, mode="w", ref_dict=None):
|
||
|
if encoder_hidden_states is None: encoder_hidden_states = hidden_states
|
||
|
if self.enabled:
|
||
|
if mode == 'w':
|
||
|
ref_dict[self.name] = encoder_hidden_states
|
||
|
elif mode == 'r':
|
||
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
|
||
|
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
|
||
|
return res
|
||
|
|
||
|
|
||
|
# class RowWiseAttnProcessor2_0:
|
||
|
# def __call__(self, attn,
|
||
|
# hidden_states,
|
||
|
# encoder_hidden_states=None,
|
||
|
# attention_mask=None,
|
||
|
# temb=None,
|
||
|
# num_views=6,
|
||
|
# *args,
|
||
|
# **kwargs):
|
||
|
# residual = hidden_states
|
||
|
# if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb)
|
||
|
|
||
|
# input_ndim = hidden_states.ndim
|
||
|
# if input_ndim == 4:
|
||
|
# batch_size, channel, height, width = hidden_states.shape
|
||
|
# hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||
|
|
||
|
# if encoder_hidden_states is None:
|
||
|
# batch_size, sequence_length, _ = hidden_states.shape
|
||
|
# else:
|
||
|
# batch_size, sequence_length, _ = encoder_hidden_states.shape
|
||
|
|
||
|
# if attention_mask is not None:
|
||
|
# attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||
|
# attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||
|
# if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||
|
|
||
|
# query = attn.to_q(hidden_states)
|
||
|
# if encoder_hidden_states is None: encoder_hidden_states = hidden_states
|
||
|
# elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||
|
|
||
|
# # encoder_hidden_states [B, 6hw+hw, C] if ref att
|
||
|
# key = attn.to_k(encoder_hidden_states) # [B, Vhw+hw, C]
|
||
|
# value = attn.to_v(encoder_hidden_states) # [B, Vhw+hw, C]
|
||
|
|
||
|
# mv_flag = hidden_states.shape[1] < encoder_hidden_states.shape[1] and encoder_hidden_states.shape[1] != 77
|
||
|
# if mv_flag:
|
||
|
# target_size = int(math.sqrt(hidden_states.shape[1] // num_views))
|
||
|
# assert target_size ** 2 * num_views == hidden_states.shape[1]
|
||
|
|
||
|
# gen_key = key[:, :num_views*target_size*target_size, :]
|
||
|
# ref_key = key[:, num_views*target_size*target_size:, :]
|
||
|
# gen_value = value[:, :num_views*target_size*target_size, :]
|
||
|
# ref_value = value[:, num_views*target_size*target_size:, :]
|
||
|
|
||
|
# # rowwise attention
|
||
|
# query, gen_key, gen_value = \
|
||
|
# rearrange( query, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c",
|
||
|
# v1=num_views//2, v2=2, h=target_size, w=target_size), \
|
||
|
# rearrange( gen_key, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c",
|
||
|
# v1=num_views//2, v2=2, h=target_size, w=target_size), \
|
||
|
# rearrange(gen_value, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c",
|
||
|
# v1=num_views//2, v2=2, h=target_size, w=target_size)
|
||
|
|
||
|
# inner_dim = key.shape[-1]
|
||
|
# ref_size = int(math.sqrt(ref_key.shape[1]))
|
||
|
# ref_key_expanded = ref_key.view(batch_size, 1, ref_size * ref_size, inner_dim)
|
||
|
# ref_key_expanded = ref_key_expanded.expand(-1, target_size, -1, -1).contiguous()
|
||
|
# ref_key_expanded = ref_key_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim)
|
||
|
# key = torch.cat([ gen_key, ref_key_expanded], dim=1)
|
||
|
|
||
|
# ref_value_expanded = ref_value.view(batch_size, 1, ref_size * ref_size, inner_dim)
|
||
|
# ref_value_expanded = ref_value_expanded.expand(-1, target_size, -1, -1).contiguous()
|
||
|
# ref_value_expanded = ref_value_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim)
|
||
|
# value = torch.cat([gen_value, ref_value_expanded], dim=1)
|
||
|
# h = target_size
|
||
|
# else:
|
||
|
# target_size = int(math.sqrt(hidden_states.shape[1]))
|
||
|
# h = 1
|
||
|
# num_views = 1
|
||
|
|
||
|
# inner_dim = key.shape[-1]
|
||
|
# head_dim = inner_dim // attn.heads
|
||
|
|
||
|
# query = query.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2)
|
||
|
# key = key.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2)
|
||
|
# value = value.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2)
|
||
|
|
||
|
# hidden_states = F.scaled_dot_product_attention(query, key, value,
|
||
|
# attn_mask=attention_mask,
|
||
|
# dropout_p=0.0,
|
||
|
# is_causal=False)
|
||
|
# hidden_states = hidden_states.transpose(1, 2).reshape(batch_size * h,
|
||
|
# -1,
|
||
|
# attn.heads * head_dim).to(query.dtype)
|
||
|
# hidden_states = attn.to_out[1](attn.to_out[0](hidden_states))
|
||
|
|
||
|
# if mv_flag: hidden_states = rearrange(hidden_states, "(b h) (v1 v2 w) c -> b (v1 h v2 w) c",
|
||
|
# b=batch_size, v1=num_views//2,
|
||
|
# v2=2, h=target_size, w=target_size)
|
||
|
|
||
|
# if input_ndim == 4:
|
||
|
# hidden_states = hidden_states.transpose(-1, -2)
|
||
|
# hidden_states = hidden_states.reshape(batch_size,
|
||
|
# channel,
|
||
|
# target_size,
|
||
|
# target_size)
|
||
|
# if attn.residual_connection: hidden_states = hidden_states + residual
|
||
|
# hidden_states = hidden_states / attn.rescale_output_factor
|
||
|
# return hidden_states
|
||
|
|
||
|
|
||
|
class RefOnlyNoisedUNet(torch.nn.Module):
|
||
|
def __init__(self, unet, train_sched, val_sched):
|
||
|
super().__init__()
|
||
|
self.unet = unet
|
||
|
self.train_sched = train_sched
|
||
|
self.val_sched = val_sched
|
||
|
|
||
|
unet_lora_attn_procs = dict()
|
||
|
for name, _ in unet.attn_processors.items():
|
||
|
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(AttnProcessor2_0(),
|
||
|
enabled=name.endswith("attn1.processor"),
|
||
|
name=name)
|
||
|
unet.set_attn_processor(unet_lora_attn_procs)
|
||
|
|
||
|
def __getattr__(self, name: str):
|
||
|
try:
|
||
|
return super().__getattr__(name)
|
||
|
except AttributeError:
|
||
|
return getattr(self.unet, name)
|
||
|
|
||
|
def forward(self, sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs, **kwargs):
|
||
|
cond_lat = cross_attention_kwargs['cond_lat']
|
||
|
noise = torch.randn_like(cond_lat)
|
||
|
if self.training:
|
||
|
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
|
||
|
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
|
||
|
else:
|
||
|
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
|
||
|
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
|
||
|
|
||
|
ref_dict = {}
|
||
|
self.unet(noisy_cond_lat,
|
||
|
timestep,
|
||
|
encoder_hidden_states,
|
||
|
*args,
|
||
|
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
|
||
|
**kwargs)
|
||
|
return self.unet(sample,
|
||
|
timestep,
|
||
|
encoder_hidden_states,
|
||
|
*args,
|
||
|
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict),
|
||
|
**kwargs)
|
||
|
|
||
|
|
||
|
class Hunyuan3d_MVD_Lite_Pipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
|
||
|
def __init__(
|
||
|
self,
|
||
|
vae: AutoencoderKL,
|
||
|
text_encoder: CLIPTextModel,
|
||
|
tokenizer: CLIPTokenizer,
|
||
|
unet: UNet2DConditionModel,
|
||
|
scheduler: KarrasDiffusionSchedulers,
|
||
|
vision_encoder: CLIPVisionModelWithProjection,
|
||
|
feature_extractor_clip: CLIPImageProcessor,
|
||
|
feature_extractor_vae: CLIPImageProcessor,
|
||
|
ramping_coefficients: Optional[list] = None,
|
||
|
safety_checker=None,
|
||
|
):
|
||
|
DiffusionPipeline.__init__(self)
|
||
|
self.register_modules(
|
||
|
vae=vae,
|
||
|
unet=unet,
|
||
|
tokenizer=tokenizer,
|
||
|
scheduler=scheduler,
|
||
|
text_encoder=text_encoder,
|
||
|
vision_encoder=vision_encoder,
|
||
|
feature_extractor_vae=feature_extractor_vae,
|
||
|
feature_extractor_clip=feature_extractor_clip)
|
||
|
'''
|
||
|
rewrite the stable diffusion pipeline
|
||
|
vae: vae
|
||
|
unet: unet
|
||
|
tokenizer: tokenizer
|
||
|
scheduler: scheduler
|
||
|
text_encoder: text_encoder
|
||
|
vision_encoder: vision_encoder
|
||
|
feature_extractor_vae: feature_extractor_vae
|
||
|
feature_extractor_clip: feature_extractor_clip
|
||
|
'''
|
||
|
self.register_to_config(ramping_coefficients=ramping_coefficients)
|
||
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||
|
|
||
|
def prepare_extra_step_kwargs(self, generator, eta):
|
||
|
extra_step_kwargs = {}
|
||
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||
|
if accepts_eta: extra_step_kwargs["eta"] = eta
|
||
|
|
||
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||
|
if accepts_generator: extra_step_kwargs["generator"] = generator
|
||
|
return extra_step_kwargs
|
||
|
|
||
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
||
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||
|
latents = latents * self.scheduler.init_noise_sigma
|
||
|
return latents
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def _encode_prompt(
|
||
|
self,
|
||
|
prompt,
|
||
|
device,
|
||
|
num_images_per_prompt,
|
||
|
do_classifier_free_guidance,
|
||
|
negative_prompt=None,
|
||
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
lora_scale: Optional[float] = None,
|
||
|
):
|
||
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
||
|
self._lora_scale = lora_scale
|
||
|
|
||
|
if prompt is not None and isinstance(prompt, str):
|
||
|
batch_size = 1
|
||
|
elif prompt is not None and isinstance(prompt, list):
|
||
|
batch_size = len(prompt)
|
||
|
else:
|
||
|
batch_size = prompt_embeds.shape[0]
|
||
|
|
||
|
if prompt_embeds is None:
|
||
|
if isinstance(self, TextualInversionLoaderMixin):
|
||
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
||
|
|
||
|
text_inputs = self.tokenizer(
|
||
|
prompt,
|
||
|
padding="max_length",
|
||
|
max_length=self.tokenizer.model_max_length,
|
||
|
truncation=True,
|
||
|
return_tensors="pt",
|
||
|
)
|
||
|
text_input_ids = text_inputs.input_ids
|
||
|
|
||
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||
|
attention_mask = text_inputs.attention_mask.to(device)
|
||
|
else:
|
||
|
attention_mask = None
|
||
|
|
||
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)[0]
|
||
|
|
||
|
if self.text_encoder is not None:
|
||
|
prompt_embeds_dtype = self.text_encoder.dtype
|
||
|
elif self.unet is not None:
|
||
|
prompt_embeds_dtype = self.unet.dtype
|
||
|
else:
|
||
|
prompt_embeds_dtype = prompt_embeds.dtype
|
||
|
|
||
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
||
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
||
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||
|
|
||
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||
|
uncond_tokens: List[str]
|
||
|
if negative_prompt is None: uncond_tokens = [""] * batch_size
|
||
|
elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError()
|
||
|
elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt]
|
||
|
elif batch_size != len(negative_prompt): raise ValueError()
|
||
|
else: uncond_tokens = negative_prompt
|
||
|
if isinstance(self, TextualInversionLoaderMixin):
|
||
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
||
|
|
||
|
max_length = prompt_embeds.shape[1]
|
||
|
uncond_input = self.tokenizer(uncond_tokens,
|
||
|
padding="max_length",
|
||
|
max_length=max_length,
|
||
|
truncation=True,
|
||
|
return_tensors="pt")
|
||
|
|
||
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||
|
attention_mask = uncond_input.attention_mask.to(device)
|
||
|
else:
|
||
|
attention_mask = None
|
||
|
|
||
|
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask)
|
||
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
||
|
|
||
|
if do_classifier_free_guidance:
|
||
|
seq_len = negative_prompt_embeds.shape[1]
|
||
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
||
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||
|
|
||
|
return prompt_embeds
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def encode_condition_image(self, image: torch.Tensor): return self.vae.encode(image).latent_dist.sample()
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def __call__(self, image=None,
|
||
|
width=640,
|
||
|
height=960,
|
||
|
num_inference_steps=75,
|
||
|
return_dict=True,
|
||
|
generator=None,
|
||
|
**kwargs):
|
||
|
batch_size = 1
|
||
|
num_images_per_prompt = 1
|
||
|
output_type = 'pil'
|
||
|
do_classifier_free_guidance = True
|
||
|
guidance_rescale = 0.
|
||
|
if isinstance(self.unet, UNet2DConditionModel):
|
||
|
self.unet = RefOnlyNoisedUNet(self.unet, None, self.scheduler).eval()
|
||
|
|
||
|
cond_image = recenter_img(image)
|
||
|
cond_image = to_rgb_image(image)
|
||
|
image = cond_image
|
||
|
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
|
||
|
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
|
||
|
image_1 = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
|
||
|
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
|
||
|
|
||
|
cond_lat = self.encode_condition_image(image_1)
|
||
|
negative_lat = self.encode_condition_image(torch.zeros_like(image_1))
|
||
|
cond_lat = torch.cat([negative_lat, cond_lat])
|
||
|
cross_attention_kwargs = dict(cond_lat=cond_lat)
|
||
|
|
||
|
global_embeds = self.vision_encoder(image_2, output_hidden_states=False).image_embeds.unsqueeze(-2)
|
||
|
encoder_hidden_states = self._encode_prompt('', self.device, num_images_per_prompt, False)
|
||
|
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
|
||
|
prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states + global_embeds * ramp])
|
||
|
|
||
|
device = self._execution_device
|
||
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||
|
timesteps = self.scheduler.timesteps
|
||
|
num_channels_latents = self.unet.config.in_channels
|
||
|
latents = self.prepare_latents(batch_size * num_images_per_prompt,
|
||
|
num_channels_latents,
|
||
|
height,
|
||
|
width,
|
||
|
prompt_embeds.dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
None)
|
||
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0)
|
||
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||
|
|
||
|
# set adaptive cfg
|
||
|
# the image order is:
|
||
|
# [0, 60,
|
||
|
# 120, 180,
|
||
|
# 240, 300]
|
||
|
# the cfg is set as 3, 2.5, 2, 1.5
|
||
|
|
||
|
tmp_guidance_scale = torch.ones_like(latents)
|
||
|
tmp_guidance_scale[:, :, :40, :40] = 3
|
||
|
tmp_guidance_scale[:, :, :40, 40:] = 2.5
|
||
|
tmp_guidance_scale[:, :, 40:80, :40] = 2
|
||
|
tmp_guidance_scale[:, :, 40:80, 40:] = 1.5
|
||
|
tmp_guidance_scale[:, :, 80:120, :40] = 2
|
||
|
tmp_guidance_scale[:, :, 80:120, 40:] = 2.5
|
||
|
|
||
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||
|
for i, t in enumerate(timesteps):
|
||
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||
|
|
||
|
noise_pred = self.unet(latent_model_input, t,
|
||
|
encoder_hidden_states=prompt_embeds,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
return_dict=False)[0]
|
||
|
|
||
|
adaptive_guidance_scale = (2 + 16 * (t / 1000) ** 5) / 3
|
||
|
if do_classifier_free_guidance:
|
||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||
|
noise_pred = noise_pred_uncond + \
|
||
|
tmp_guidance_scale * adaptive_guidance_scale * \
|
||
|
(noise_pred_text - noise_pred_uncond)
|
||
|
|
||
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||
|
|
||
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||
|
if i==len(timesteps)-1 or ((i+1)>num_warmup_steps and (i+1)%self.scheduler.order==0):
|
||
|
progress_bar.update()
|
||
|
|
||
|
latents = unscale_latents(latents)
|
||
|
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
|
||
|
image = self.image_processor.postprocess(image, output_type='pil')[0]
|
||
|
image = [image, cond_image]
|
||
|
return ImagePipelineOutput(images=image) if return_dict else (image,)
|
||
|
|