mirror of
https://gitee.com/Tencent/Hunyuan3D-1.git
synced 2024-11-29 10:39:19 +08:00
303 lines
13 KiB
Python
303 lines
13 KiB
Python
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
|
|
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
|
|
|
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
|
# The below software and/or models in this distribution may have been
|
|
# modified by THL A29 Limited ("Tencent Modifications").
|
|
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
|
|
|
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
|
# except for the third-party components listed below.
|
|
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
|
# in the repsective licenses of these third-party components.
|
|
# Users must comply with all terms and conditions of original licenses of these third-party
|
|
# components and must ensure that the usage of the third party components adheres to
|
|
# all relevant laws and regulations.
|
|
|
|
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
|
# their software and algorithms, including trained model weights, parameters (including
|
|
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
|
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
|
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
|
|
|
import os
|
|
import warnings
|
|
warnings.simplefilter('ignore', category=UserWarning)
|
|
warnings.simplefilter('ignore', category=FutureWarning)
|
|
warnings.simplefilter('ignore', category=DeprecationWarning)
|
|
|
|
import gradio as gr
|
|
from glob import glob
|
|
import shutil
|
|
import torch
|
|
import numpy as np
|
|
from PIL import Image
|
|
from einops import rearrange
|
|
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--use_lite", default=False, action="store_true")
|
|
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
|
|
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
|
|
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
|
|
parser.add_argument("--save_memory", default=False, action="store_true")
|
|
parser.add_argument("--device", default="cuda:0", type=str)
|
|
args = parser.parse_args()
|
|
|
|
################################################################
|
|
|
|
CONST_PORT = 8080
|
|
CONST_MAX_QUEUE = 1
|
|
CONST_SERVER = '0.0.0.0'
|
|
|
|
CONST_HEADER = '''
|
|
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D
|
|
Generationr</b></a></h2>
|
|
Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/placeholder' target='_blank'>ArXiv</a>.
|
|
|
|
❗️❗️❗️**Important Notes:**
|
|
- Our demo can export a .obj mesh with vertex colors or a .glb mesh by default.
|
|
- If you check "texture mapping", it will export a .obj mesh with a texture map or a .glb mesh.
|
|
- If you check "render Gif", it will export gif image rendering .glb file.
|
|
- If the result is unsatisfying, please try a different **seed value** (Default: 0).
|
|
'''
|
|
|
|
CONST_CITATION = r"""
|
|
If HunYuan3D-1 is helpful, please help to ⭐ the <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/tencent/Hunyuan3D-1?style=social)](https://github.com/tencent/Hunyuan3D-1)
|
|
---
|
|
📝 **Citation**
|
|
If you find our work useful for your research or applications, please cite using this bibtex:
|
|
```bibtex
|
|
@misc{xxx,
|
|
title={Hunyuan3D-1.0: First Unified Framework for Text-to-3D and Image-to-3D Generation},
|
|
author={},
|
|
year={2024},
|
|
eprint={},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
```
|
|
"""
|
|
|
|
################################################################
|
|
|
|
def get_example_img_list():
|
|
print('Loading example img list ...')
|
|
return sorted(glob('./demos/example_*.png'))
|
|
|
|
def get_example_txt_list():
|
|
print('Loading example txt list ...')
|
|
txt_list = list()
|
|
for line in open('./demos/example_list.txt'):
|
|
txt_list.append(line.strip())
|
|
return txt_list
|
|
|
|
example_is = get_example_img_list()
|
|
example_ts = get_example_txt_list()
|
|
################################################################
|
|
|
|
from infer import seed_everything, save_gif
|
|
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
|
|
|
|
|
|
worker_xbg = Removebg()
|
|
print(f"loading {args.text2image_path}")
|
|
worker_t2i = Text2Image(
|
|
pretrain = args.text2image_path,
|
|
device = args.device,
|
|
save_memory = args.save_memory
|
|
)
|
|
worker_i2v = Image2Views(
|
|
use_lite = args.use_lite,
|
|
device = args.device
|
|
)
|
|
worker_v23 = Views2Mesh(
|
|
args.mv23d_cfg_path,
|
|
args.mv23d_ckt_path,
|
|
use_lite = args.use_lite,
|
|
device = args.device
|
|
)
|
|
worker_gif = GifRenderer(args.device)
|
|
|
|
def stage_0_t2i(text, image, seed, step):
|
|
# prepare save_folder
|
|
os.makedirs('./outputs/app_output', exist_ok=True)
|
|
exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
|
|
if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0
|
|
else: cur_id = min(set(range(30)) - exists)
|
|
if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"):
|
|
shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}")
|
|
save_folder = f'./outputs/app_output/{cur_id}'
|
|
os.makedirs(save_folder, exist_ok=True)
|
|
|
|
dst = save_folder + '/img.png'
|
|
|
|
if not text:
|
|
if image is None:
|
|
return dst, save_folder
|
|
raise gr.Error("Upload image or provide text ...")
|
|
image.save(dst)
|
|
return dst, save_folder
|
|
|
|
image = worker_t2i(text, seed, step)
|
|
image.save(dst)
|
|
dst = worker_xbg(image, save_folder)
|
|
return dst, save_folder
|
|
|
|
def stage_1_xbg(image, save_folder):
|
|
if isinstance(image, str):
|
|
image = Image.open(image)
|
|
dst = save_folder + '/img_nobg.png'
|
|
rgba = worker_xbg(image)
|
|
rgba.save(dst)
|
|
return dst
|
|
|
|
def stage_2_i2v(image, seed, step, save_folder):
|
|
if isinstance(image, str):
|
|
image = Image.open(image)
|
|
gif_dst = save_folder + '/views.gif'
|
|
res_img, pils = worker_i2v(image, seed, step)
|
|
save_gif(pils, gif_dst)
|
|
views_img, cond_img = res_img[0], res_img[1]
|
|
img_array = np.asarray(views_img, dtype=np.uint8)
|
|
show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
|
show_img = show_img[worker_i2v.order, ...]
|
|
show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
|
show_img = Image.fromarray(show_img)
|
|
return views_img, cond_img, show_img
|
|
|
|
def stage_3_v23(
|
|
views_pil,
|
|
cond_pil,
|
|
seed,
|
|
save_folder,
|
|
target_face_count = 30000,
|
|
do_texture_mapping = True,
|
|
do_render =True
|
|
):
|
|
do_texture_mapping = do_texture_mapping or do_render
|
|
obj_dst = save_folder + '/mesh_with_colors.obj'
|
|
glb_dst = save_folder + '/mesh.glb'
|
|
worker_v23(
|
|
views_pil,
|
|
cond_pil,
|
|
seed = seed,
|
|
save_folder = save_folder,
|
|
target_face_count = target_face_count,
|
|
do_texture_mapping = do_texture_mapping
|
|
)
|
|
return obj_dst, glb_dst
|
|
|
|
def stage_4_gif(obj_dst, save_folder, do_render_gif=True):
|
|
if not do_render_gif: return None
|
|
gif_dst = save_folder + '/output.gif'
|
|
worker_gif(
|
|
save_folder + '/mesh.obj',
|
|
gif_dst_path = gif_dst
|
|
)
|
|
return gif_dst
|
|
|
|
#===============================================================
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(CONST_HEADER)
|
|
with gr.Row(variant="panel"):
|
|
with gr.Column(scale=2):
|
|
with gr.Tab("Text to 3D"):
|
|
with gr.Column():
|
|
text = gr.TextArea('一只黑白相间的熊猫在白色背景上居中坐着,呈现出卡通风格和可爱氛围。', lines=1, max_lines=10, label='Input text')
|
|
with gr.Row():
|
|
textgen_seed = gr.Number(value=0, label="T2I seed", precision=0)
|
|
textgen_step = gr.Number(value=25, label="T2I step", precision=0)
|
|
textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
|
|
textgen_STEP = gr.Number(value=50, label="Gen step", precision=0)
|
|
textgen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
|
|
|
|
with gr.Row():
|
|
textgen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
|
|
textgen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
|
|
textgen_submit = gr.Button("Generate", variant="primary")
|
|
|
|
with gr.Row():
|
|
gr.Examples(examples=example_ts, inputs=[text], label="Txt examples", examples_per_page=10)
|
|
|
|
with gr.Tab("Image to 3D"):
|
|
with gr.Column():
|
|
input_image = gr.Image(label="Input image",
|
|
width=256, height=256, type="pil",
|
|
image_mode="RGBA", sources="upload",
|
|
interactive=True)
|
|
with gr.Row():
|
|
imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
|
|
imggen_STEP = gr.Number(value=50, label="Gen step", precision=0)
|
|
imggen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
|
|
|
|
with gr.Row():
|
|
imggen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
|
|
imggen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
|
|
imggen_submit = gr.Button("Generate", variant="primary")
|
|
with gr.Row():
|
|
gr.Examples(examples=example_is, inputs=[input_image], label="Img examples", examples_per_page=10)
|
|
|
|
with gr.Column(scale=3):
|
|
with gr.Tab("rembg image"):
|
|
rem_bg_image = gr.Image(label="No backgraound image",
|
|
width=256, height=256, type="pil",
|
|
image_mode="RGBA", interactive=False)
|
|
|
|
with gr.Tab("Multi views"):
|
|
result_image = gr.Image(label="Multi views", type="pil", interactive=False)
|
|
with gr.Tab("Obj"):
|
|
result_3dobj = gr.Model3D(label="Output obj", interactive=False)
|
|
with gr.Tab("Glb"):
|
|
result_3dglb = gr.Model3D(label="Output glb", interactive=False)
|
|
gr.Markdown("The glb file displayed on the grario will be dark. We recommend downloading and opening it with 3D software, such as Blender, MeshLab, etc")
|
|
with gr.Tab("GIF"):
|
|
result_gif = gr.Image(label="Rendered GIF", interactive=False)
|
|
|
|
#===============================================================
|
|
|
|
none = gr.State(None)
|
|
save_folder = gr.State()
|
|
cond_image = gr.State()
|
|
views_image = gr.State()
|
|
text_image = gr.State()
|
|
|
|
textgen_submit.click(
|
|
fn=stage_0_t2i, inputs=[text, none, textgen_seed, textgen_step],
|
|
outputs=[rem_bg_image, save_folder],
|
|
).success(
|
|
fn=stage_2_i2v, inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder],
|
|
outputs=[views_image, cond_image, result_image],
|
|
).success(
|
|
fn=stage_3_v23, inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, textgen_do_texture_mapping, textgen_do_render_gif],
|
|
outputs=[result_3dobj, result_3dglb],
|
|
).success(
|
|
fn=stage_4_gif, inputs=[result_3dglb, save_folder, textgen_do_render_gif],
|
|
outputs=[result_gif],
|
|
).success(lambda: print('Text_to_3D Done ...'))
|
|
|
|
imggen_submit.click(
|
|
fn=stage_0_t2i, inputs=[none, input_image, textgen_seed, textgen_step],
|
|
outputs=[text_image, save_folder],
|
|
).success(
|
|
fn=stage_1_xbg, inputs=[text_image, save_folder],
|
|
outputs=[rem_bg_image],
|
|
).success(
|
|
fn=stage_2_i2v, inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder],
|
|
outputs=[views_image, cond_image, result_image],
|
|
).success(
|
|
fn=stage_3_v23, inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, imggen_do_texture_mapping, imggen_do_render_gif],
|
|
outputs=[result_3dobj, result_3dglb],
|
|
).success(
|
|
fn=stage_4_gif, inputs=[result_3dglb, save_folder, imggen_do_render_gif],
|
|
outputs=[result_gif],
|
|
).success(lambda: print('Image_to_3D Done ...'))
|
|
|
|
#===============================================================
|
|
|
|
gr.Markdown(CONST_CITATION)
|
|
demo.queue(max_size=CONST_MAX_QUEUE)
|
|
demo.launch(server_name=CONST_SERVER, server_port=CONST_PORT)
|
|
|