ModelLink2/convert_ckpt.py

112 lines
4.5 KiB
Python
Raw Permalink Normal View History

2023-12-26 15:34:19 +08:00
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
import argparse
import importlib
import os
import sys
from functools import wraps
2023-12-26 15:34:19 +08:00
import torch.multiprocessing as mp
from modellink import megatron_adaptor
from pretrain_gpt import model_provider
MODULE_ROOT = "modellink.tasks.checkpoint"
2023-12-26 15:34:19 +08:00
2023-12-26 15:34:19 +08:00
def load_plugin(plugin_type, name):
if name == '':
module_name = f"{MODULE_ROOT}.{plugin_type}"
else:
module_name = f"{MODULE_ROOT}.{plugin_type}_{name}"
2023-12-26 15:34:19 +08:00
try:
plugin = importlib.import_module(module_name)
except ModuleNotFoundError:
module_name = f"{MODULE_ROOT}.{name}"
2023-12-26 15:34:19 +08:00
try:
plugin = importlib.import_module(module_name)
except ModuleNotFoundError:
sys.exit(f"Unable to load {plugin_type} plugin {name}. Exiting.")
if not hasattr(plugin, 'add_arguments'):
sys.exit(f"{module_name} module is not a plugin. Exiting.")
print(f"Loaded {module_name} as the {plugin_type}.")
return plugin
def main():
parser = argparse.ArgumentParser(description="Megatron Checkpoint Utility Arguments",
allow_abbrev=False, conflict_handler='resolve')
parser.add_argument('--model-type', type=str, required=True,
choices=['GPT', 'BERT'],
help='Type of the model')
parser.add_argument('--loader', type=str, default='megatron',
help='Module name to load checkpoint, should be on python path')
parser.add_argument('--load-model-type', type=str, nargs='?',
default=None, const=None, choices=['hf', 'mg'],
help='Module name to load checkpoint, should be on python path')
2023-12-26 15:34:19 +08:00
parser.add_argument('--saver', type=str, default='megatron',
help='Module name to save checkpoint, should be on python path')
2023-12-26 15:34:19 +08:00
parser.add_argument('--load-dir', type=str, required=True,
help='Directory to load model checkpoint from')
parser.add_argument('--save-dir', type=str, required=True,
help='Directory to save model checkpoint to')
parser.add_argument('--max-queue-size', type=int, default=50,
help='Maximum number of tensors in the queue')
parser.add_argument('--no-checking', action='store_false',
help='Do not perform checking on the name and ordering of weights',
dest='checking')
parser.add_argument('--spec', type=str, default=None, nargs='*',
help='Specify the <module_location function_name> pair '
'that returns a spec to customize transformer layer, depending on the use case.')
parser.add_argument('--model-type-hf', type=str, default="llama2",
choices=['baichuan', 'baichuan2', 'llama2', 'mixtral', 'chatglm3', 'gemma', 'gemma2', 'bloom',
'qwen', 'internlm2', 'deepseek2', 'minicpm', 'minicpm-moe', 'deepseek2-lite', 'qwen2-moe'],
help='model type of huggingface')
2023-12-26 15:34:19 +08:00
known_args, _ = parser.parse_known_args()
use_saver = known_args.load_model_type is None
if use_saver:
loader = load_plugin('loader', known_args.loader)
saver = load_plugin('saver', known_args.saver)
else:
loader = load_plugin('loader', known_args.load_model_type)
saver = load_plugin('saver', '')
2023-12-26 15:34:19 +08:00
loader.add_arguments(parser)
saver.add_arguments(parser)
args = parser.parse_args()
queue = mp.Queue(maxsize=args.max_queue_size)
print("Starting saver...")
saver_proc = mp.Process(target=saver.save_model_checkpoint, args=(model_provider, queue, args))
2023-12-26 15:34:19 +08:00
saver_proc.start()
print("Starting loader...")
loader.load_checkpoint(model_provider, queue, args)
2023-12-26 15:34:19 +08:00
print("Waiting for saver to complete...")
saver_proc.join()
if __name__ == '__main__':
main()