ModelLink2/tools/checkpoint/convert_ckpt.py

101 lines
3.6 KiB
Python
Raw Normal View History

2023-12-26 15:34:19 +08:00
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
import argparse
import importlib
import os
import sys
from functools import wraps
2023-12-26 15:34:19 +08:00
import torch.multiprocessing as mp
import modellink
2023-12-26 15:34:19 +08:00
def is_enable_lora_wrapper(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return False
return wrapper
2023-12-26 15:34:19 +08:00
def load_plugin(plugin_type, name):
module_name = f"{plugin_type}_{name}"
try:
plugin = importlib.import_module(module_name)
except ModuleNotFoundError:
module_name = name
try:
plugin = importlib.import_module(module_name)
except ModuleNotFoundError:
sys.exit(f"Unable to load {plugin_type} plugin {name}. Exiting.")
if not hasattr(plugin, 'add_arguments'):
sys.exit(f"{module_name} module is not a plugin. Exiting.")
print(f"Loaded {module_name} as the {plugin_type}.")
return plugin
def main():
parser = argparse.ArgumentParser(description="Megatron Checkpoint Utility Arguments",
allow_abbrev=False, conflict_handler='resolve')
parser.add_argument('--model-type', type=str, required=True,
choices=['GPT', 'BERT'],
help='Type of the model')
parser.add_argument('--loader', type=str, default='megatron',
help='Module name to load checkpoint, should be on python path')
parser.add_argument('--saver', type=str, default='megatron',
help='Module name to save checkpoint, shdoul be on python path')
parser.add_argument('--load-dir', type=str, required=True,
help='Directory to load model checkpoint from')
parser.add_argument('--lora-dir', type=str,
help='Directory to lora model checkpoint from')
2023-12-26 15:34:19 +08:00
parser.add_argument('--save-dir', type=str, required=True,
help='Directory to save model checkpoint to')
parser.add_argument('--max-queue-size', type=int, default=50,
help='Maximum number of tensors in the queue')
parser.add_argument('--no-checking', action='store_false',
help='Do not perform checking on the name and ordering of weights',
dest='checking')
modellink.checkpointing.is_enable_lora = is_enable_lora_wrapper(modellink.checkpointing.is_enable_lora)
2023-12-26 15:34:19 +08:00
known_args, _ = parser.parse_known_args()
loader = load_plugin('loader', known_args.loader)
saver = load_plugin('saver', known_args.saver)
loader.add_arguments(parser)
saver.add_arguments(parser)
args = parser.parse_args()
queue = mp.Queue(maxsize=args.max_queue_size)
print("Starting saver...")
saver_proc = mp.Process(target=saver.save_model_checkpoint, args=(queue, args))
saver_proc.start()
print("Starting loader...")
loader.load_checkpoint(queue, args)
print("Waiting for saver to complete...")
saver_proc.join()
if __name__ == '__main__':
main()