!1466 支持reuse-fp32-param

Merge pull request !1466 from WangYu/reuse-fp32
This commit is contained in:
WangYu 2024-08-02 03:40:07 +00:00 committed by i-robot
parent e79fc1081f
commit 34f970f19b
4 changed files with 315 additions and 1 deletions

View File

@ -869,6 +869,13 @@ ModelLink预训练支持张量并行、流水线并行等多种加速算法和
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>显存 </td>
<td>参数副本复用</td>
<td>--reuse-fp32-param</td>
<td>Yes</td>
<td> Yes</td>
</tr>
<tr>
<td rowspan="3">通信</td>
<td>梯度reduce通算掩盖</td>

View File

@ -290,7 +290,9 @@ def _add_network_size_args(parser):
def _add_algorithm_args(parser):
group = parser.add_argument_group(title='algorithm')
group.add_argument('--rotary-base', type=float, help='rotary-base.')
group.add_argument('--reuse-fp32-param', action='store_true',
help='The distributed training optimizer frees up '
'param copies of FP32 to save memory.')
return parser
@ -462,6 +464,13 @@ def core_transformer_config_from_args_wrapper(fn):
return wrapper
def _validate_optimizer(args):
if args.reuse_fp32_param and not args.bf16:
raise AssertionError('--reuse-fp32-param only support for `bf16`')
if args.reuse_fp32_param and args.enable_high_availability:
raise AssertionError('reuse-fp32-param and enable-high-availability do not support enabling together.')
def validate_args_decorator(megatron_validate_args):
@wraps(megatron_validate_args)
def wrapper(args, defaults=None):
@ -480,6 +489,7 @@ def validate_args_decorator(megatron_validate_args):
_validate_high_availability(args)
_validate_moe_expert_capacity_factor(args)
_validate_optimizer(args)
from modellink.utils import print_args
print_args('ModelLink Arguments', args)
return args

View File

@ -1,10 +1,13 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
import types
import itertools
from functools import wraps
from typing import Callable, Dict, List, Optional, Tuple
import torch
import torch_npu
import torch.distributed
from apex.optimizers import FusedAdam as Adam
from megatron.training import get_args
@ -12,6 +15,288 @@ from megatron.core.distributed import ParamAndGradBuffer
from megatron.core.optimizer.grad_scaler import MegatronGradScaler
from megatron.core.optimizer import OptimizerConfig
from megatron.core.optimizer.optimizer import MixedPrecisionOptimizer
from mindspeed.optimizer.distrib_optimizer import _copy_model_params_to_main_params
TRANSPOSE_BF16_BLOCK_SIZE = 4096 * 4096
def reuse_fp32_param_distrib_optimizer_init_wrapper(init_func):
@wraps(init_func)
def reuse_fp32_param_distrib_optimizer_init(self, *args, **kwargs):
init_func(*args, **kwargs)
global_args = get_args()
self.reuse_fp32_param = global_args.reuse_fp32_param if hasattr(global_args, "reuse_fp32_param") else False
# A flag that disables the value subtraction when the `fp16_tensor_convert_to_fp32_tensor` function is invoked for the first time.
self.first_sub_flag = True
if self.reuse_fp32_param:
from mindspeed.op_builder import AlgorithmOpBuilder
reuse_data_ptr = AlgorithmOpBuilder().load().reuse_data_ptr
data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
self.model_param_bucket_and_res_map = {}
self.model_param_bucket_and_shard_main_param_int32_view_map = {}
self.shard_main_param_res_buffers = []
self.bucket_num_groups = []
if data_parallel_world_size == 1:
self.shard_fp32_param_fp16_view_group = []
for buffer in self.buffers:
buffer_numel = buffer.param_data.numel()
shard_res_and_buffer_model_param = torch.zeros(buffer_numel * 2, dtype=torch.bfloat16, device=buffer.param_data.device)
shard_main_param_int32_view_buffer = torch.empty(buffer_numel, dtype=torch.int32, device=buffer.param_data.device)
reuse_data_ptr(shard_main_param_int32_view_buffer, shard_res_and_buffer_model_param, 0)
self.shard_main_param_res_buffers.append(shard_res_and_buffer_model_param)
self.model_param_bucket_and_shard_main_param_int32_view_map[shard_res_and_buffer_model_param] = shard_main_param_int32_view_buffer
for model_fp16_params_this_group, shard_fp32_from_float16_group in zip(
self.model_float16_groups, self.shard_fp32_from_float16_groups):
for i, (model_param, shard_fp32_main_param) in enumerate(
zip(model_fp16_params_this_group, shard_fp32_from_float16_group)):
gbuf_index, _, bucket_id = self.model_param_gbuf_map[model_param]
data_start_index, data_end_index, bucket_id = self.buffers[gbuf_index].param_index_map[model_param]
reuse_data_ptr(shard_fp32_from_float16_group[i], self.shard_main_param_res_buffers[gbuf_index], data_start_index)
old_param_data = model_param.data
model_param.data = self.shard_main_param_res_buffers[gbuf_index][data_start_index + data_end_index: 2 * data_end_index].view(old_param_data.shape)
model_param.data.detach().copy_(old_param_data)
self.shard_fp32_param_fp16_view_group.append(self.shard_main_param_res_buffers[gbuf_index][2 * data_start_index: 2 * data_end_index])
for i, buffer in enumerate(self.buffers):
buffer_numel = buffer.param_data.numel()
reuse_data_ptr(buffer.param_data, self.shard_main_param_res_buffers[i], buffer_numel)
else:
for buffer in self.buffers:
self.bucket_num_group = []
bucket_res_numel = 0
res_numel = buffer.numel // data_parallel_world_size
shard_main_param_res_buffer = torch.zeros(res_numel, dtype=torch.bfloat16, device=buffer.param_data.device)
self.shard_main_param_res_buffers.append(shard_main_param_res_buffer)
for bucket in buffer.buckets:
self.bucket_num_group.append(bucket.param_data.numel())
param_data_dp_numel = bucket.param_data.numel() // data_parallel_world_size
shard_main_param_int32_view_bucket = torch.empty(param_data_dp_numel, dtype=torch.int32, device=bucket.param_data.device)
reuse_data_ptr(
shard_main_param_int32_view_bucket,
buffer.param_data,
(bucket_res_numel * data_parallel_world_size) // 2 + max(0, data_parallel_rank - 1) * param_data_dp_numel // 2)
self.model_param_bucket_and_res_map[bucket.param_data] = self.shard_main_param_res_buffers[-1][bucket_res_numel: bucket_res_numel + param_data_dp_numel]
self.model_param_bucket_and_shard_main_param_int32_view_map[bucket.param_data] = shard_main_param_int32_view_bucket
bucket_res_numel += param_data_dp_numel
self.bucket_num_groups.append(self.bucket_num_group)
for model_fp16_params_this_group, shard_fp32_from_float16_group in zip(
self.model_float16_groups, self.shard_fp32_from_float16_groups):
for i, (model_param, shard_fp32_main_param) in enumerate(
zip(model_fp16_params_this_group, shard_fp32_from_float16_group)):
world_range = self._get_model_param_range_map(model_param)["gbuf_world_in_bucket"]
gbuf_index, _, bucket_id = self.model_param_gbuf_map[model_param]
model_param_buffer = self.buffers[gbuf_index].param_data
bucket_offset_in_buffer = sum(self.bucket_num_groups[gbuf_index][:bucket_id]) // 2
model_param_bucket = self.buffers[gbuf_index].buckets[bucket_id].param_data
model_param_bucket_numel_per_dp = model_param_bucket.numel() // data_parallel_world_size
shard_fp32_param_bucket_offset = world_range.start if data_parallel_rank == 0 else \
world_range.start - model_param_bucket_numel_per_dp * (1 + data_parallel_rank) // 2
shard_main_param_buffer_start = bucket_offset_in_buffer + shard_fp32_param_bucket_offset
reuse_data_ptr(shard_fp32_from_float16_group[i], model_param_buffer, shard_main_param_buffer_start)
torch_npu.npu.empty_cache()
self._copy_model_params_to_main_params = _copy_model_params_to_main_params
self.load_parameter_state_from_dp_zero_func = self.load_parameter_state_from_dp_zero
self.load_parameter_state_from_dp_zero = types.MethodType(load_parameter_state_from_dp_zero, self)
self.get_parameter_state_dp_zero_func = self.get_parameter_state_dp_zero
self.get_parameter_state_dp_zero = types.MethodType(get_parameter_state_dp_zero, self)
self.fp16_tensor_convert_to_fp32_tensor = types.MethodType(fp16_tensor_convert_to_fp32_tensor, self)
self.fp32_tensor_convert_to_fp16_tensor = types.MethodType(fp32_tensor_convert_to_fp16_tensor, self)
return reuse_fp32_param_distrib_optimizer_init
def load_parameter_state_from_dp_zero(self, state_dict):
self.load_parameter_state_from_dp_zero_func(state_dict)
self.first_sub_flag = False
data_parallel_world_size = self.data_parallel_group_gloo.size()
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
data_parallel_group_gloo = self.data_parallel_group_gloo
data_parallel_global_ranks = torch.distributed.get_process_group_ranks(
self.data_parallel_group_gloo
)
if data_parallel_world_size == 1 or \
not hasattr(self, "shard_main_param_res_buffers"):
return
for i, shard_main_param_res_buffer in enumerate(self.shard_main_param_res_buffers):
shard_res_numel = shard_main_param_res_buffer.numel()
if data_parallel_rank == 0:
send_tensors = [
state_dict["shard_main_param_res"][i][
dpr * shard_res_numel: (dpr + 1) * shard_res_numel] for dpr in range(data_parallel_world_size)
]
else:
send_tensors = None
shard_res_numel = shard_main_param_res_buffer.numel()
recv_tensor = torch.empty((shard_res_numel,), dtype=torch.float16, device="cpu")
torch.distributed.scatter(
recv_tensor,
send_tensors,
data_parallel_global_ranks[0],
data_parallel_group_gloo,
)
recv_tensor_bf16_view = torch.tensor(recv_tensor.data.untyped_storage(), dtype=torch.bfloat16, device=recv_tensor.device)
shard_main_param_res_buffer.copy_(recv_tensor_bf16_view)
def get_parameter_state_dp_zero(self):
state = self.get_parameter_state_dp_zero_func()
data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
data_parallel_group_gloo = self.data_parallel_group_gloo
data_parallel_global_ranks = torch.distributed.get_process_group_ranks(
self.data_parallel_group_gloo
)
if data_parallel_world_size == 1 or not hasattr(self, "shard_main_param_res_buffers"):
return state
# gather buffer res
buffer_res_full_shard = []
for shard_main_param_res_buffer in self.shard_main_param_res_buffers:
if data_parallel_rank == 0:
recv_tensors = [torch.empty((shard_main_param_res_buffer.numel(),), dtype=torch.float16, device="cpu") for _ in range(data_parallel_world_size)]
else:
recv_tensors = None
send_tensor = torch.empty((shard_main_param_res_buffer.numel(),), dtype=torch.float16, device="cpu")
send_tensor_bf16_view = torch.tensor(send_tensor.data.untyped_storage(), dtype=torch.bfloat16, device=send_tensor.device)
send_tensor_bf16_view.copy_(shard_main_param_res_buffer.detach().cpu())
torch.distributed.gather(
send_tensor,
recv_tensors,
data_parallel_global_ranks[0],
data_parallel_group_gloo,
)
if data_parallel_rank == 0:
buffer_res_full_shard.append(torch.cat(recv_tensors))
state['shard_main_param_res'] = buffer_res_full_shard
return state
def fp16_tensor_convert_to_fp32_tensor(self):
"""
res(0000) + bf16(pppp) -> fp32(0p0p0p0p)
Transform the bf16 data and residuals data in the continuous memory block
into the fp32 tensor through view transposition.
"""
data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
if data_parallel_world_size == 1:
for shard_fp32_param_fp16_view in self.shard_fp32_param_fp16_view_group:
shard_fp32_param_fp16_view.copy_(
shard_fp32_param_fp16_view.view(2, -1).transpose(1, 0).reshape(-1).contiguous())
for shard_res_and_buffer_model_param in self.shard_main_param_res_buffers:
shard_main_param_int32_view_buffer = self.model_param_bucket_and_shard_main_param_int32_view_map[
shard_res_and_buffer_model_param]
if not self.first_sub_flag:
shard_main_param_int32_view_buffer.sub_(32768)
else:
for buffer in self.buffers:
for bucket in buffer.buckets:
bucket_param_data = bucket.param_data
param_data_dp_numel = bucket_param_data.numel() // data_parallel_world_size
bucket_res = self.model_param_bucket_and_res_map[bucket_param_data]
if data_parallel_rank == 0:
bucket_param_data[param_data_dp_numel:param_data_dp_numel * 2].copy_(
bucket_param_data[:param_data_dp_numel])
bucket_res_position = max(0, data_parallel_rank - 1) * param_data_dp_numel
shard_fp32_main_param_view = bucket_param_data[
bucket_res_position: bucket_res_position + param_data_dp_numel * 2]
shard_main_param_int32_view_bucket = self.model_param_bucket_and_shard_main_param_int32_view_map[
bucket_param_data]
loops = param_data_dp_numel // TRANSPOSE_BF16_BLOCK_SIZE
remain = param_data_dp_numel % TRANSPOSE_BF16_BLOCK_SIZE
workspace = torch.zeros(
TRANSPOSE_BF16_BLOCK_SIZE * 2, dtype=torch.bfloat16, device=bucket_res.device)
residual_space = bucket_res
bf16_space_dp_rank = max(1, data_parallel_rank)
bf16_space = bucket_param_data[
param_data_dp_numel * bf16_space_dp_rank:param_data_dp_numel * (bf16_space_dp_rank + 1)]
for loop in range(loops):
copy_start = loop * TRANSPOSE_BF16_BLOCK_SIZE
copy_end = (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE
workspace_convert_view = workspace[:TRANSPOSE_BF16_BLOCK_SIZE * 2]
workspace[:TRANSPOSE_BF16_BLOCK_SIZE].copy_(residual_space[copy_start: copy_end])
workspace[TRANSPOSE_BF16_BLOCK_SIZE:TRANSPOSE_BF16_BLOCK_SIZE * 2].copy_(
bf16_space[copy_start: copy_end])
shard_fp32_main_param_view[copy_start * 2: copy_end * 2].copy_(
workspace_convert_view.view(2, -1).transpose(1, 0).reshape(-1).contiguous())
if remain > 0:
workspace_convert_view = workspace[:remain * 2]
workspace[:remain].copy_(residual_space[-remain:])
workspace[remain:remain * 2].copy_(bf16_space[-remain:])
shard_fp32_main_param_view[-remain * 2:].copy_(
workspace_convert_view.view(2, -1).transpose(1, 0).reshape(-1).contiguous())
if not self.first_sub_flag:
shard_main_param_int32_view_bucket[:param_data_dp_numel].sub_(32768)
def fp32_tensor_convert_to_fp16_tensor(self):
"""
fp32(0p0p0p0p) -> fp32(0'p0'p0'p0'p) -> res(0000) + bf16(pppp)
Transform the fp32 tensor in the continuous memory block
into the bf16 data and residual through view transposition.
"""
data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
if data_parallel_world_size == 1:
for shard_res_and_buffer_model_param in self.shard_main_param_res_buffers:
shard_main_param_int32_view_buffer = self.model_param_bucket_and_shard_main_param_int32_view_map[
shard_res_and_buffer_model_param]
shard_main_param_int32_view_buffer.add_(32768)
self.first_sub_flag = False
for shard_fp32_param_fp16_view in self.shard_fp32_param_fp16_view_group:
shard_fp32_param_fp16_view.copy_(
shard_fp32_param_fp16_view.view(-1, 2).transpose(1, 0).reshape(-1).contiguous())
else:
for buffer in self.buffers:
for bucket in buffer.buckets:
bucket_param_data = bucket.param_data
param_data_dp_numel = bucket_param_data.numel() // data_parallel_world_size
bucket_res = self.model_param_bucket_and_res_map[bucket_param_data]
shard_main_param_int32_view_bucket = self.model_param_bucket_and_shard_main_param_int32_view_map[
bucket_param_data]
shard_main_param_int32_view_bucket[:param_data_dp_numel].add_(32768)
self.first_sub_flag = False
bucket_res_position = max(0, data_parallel_rank - 1) * param_data_dp_numel
shard_fp32_main_param_view = bucket_param_data[
bucket_res_position: bucket_res_position + param_data_dp_numel * 2]
loops = param_data_dp_numel // TRANSPOSE_BF16_BLOCK_SIZE
remain = param_data_dp_numel % TRANSPOSE_BF16_BLOCK_SIZE
workspace = torch.zeros(
TRANSPOSE_BF16_BLOCK_SIZE * 2, dtype=torch.bfloat16, device=bucket_res.device)
bf16_space_dp_rank = max(0, data_parallel_rank - 1)
residual_space = bucket_res
bf16_space = bucket_param_data[
param_data_dp_numel * bf16_space_dp_rank:param_data_dp_numel * (bf16_space_dp_rank + 1)]
for loop in range(loops):
workspace_convert_view = workspace[:TRANSPOSE_BF16_BLOCK_SIZE * 2]
workspace_convert_view.copy_(
shard_fp32_main_param_view[
loop * TRANSPOSE_BF16_BLOCK_SIZE * 2: (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE * 2])
temp = workspace_convert_view.view(-1, 2).transpose(1, 0).reshape(-1).contiguous()
residual_space[loop * TRANSPOSE_BF16_BLOCK_SIZE: (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE].copy_(
temp[:TRANSPOSE_BF16_BLOCK_SIZE])
bf16_space[loop * TRANSPOSE_BF16_BLOCK_SIZE: (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE].copy_(
temp[TRANSPOSE_BF16_BLOCK_SIZE: TRANSPOSE_BF16_BLOCK_SIZE * 2])
if remain > 0:
workspace_convert_view = workspace[:remain * 2]
workspace_convert_view.copy_(shard_fp32_main_param_view[-remain * 2:])
temp = workspace_convert_view.view(-1, 2).transpose(1, 0).reshape(-1).contiguous()
residual_space[-remain:].copy_(temp[:remain])
bf16_space[-remain:].copy_(temp[remain: remain * 2])
if data_parallel_rank != 0:
shard_fp32_main_param_view[param_data_dp_numel:param_data_dp_numel * 2].copy_(
shard_fp32_main_param_view[:param_data_dp_numel])
def distributed_optimizer_init(

View File

@ -89,6 +89,7 @@ def patch_megatron_noncore():
patch_training()
patch_log_handler()
patch_high_availability_feature()
patch_optimizer()
def patch_fusions():
@ -312,3 +313,14 @@ def patch_high_availability_feature():
PatchManager.register_patch('megatron.core.optimizer.optimizer.clip_grad_norm_fp32', clip_grad_norm_fp32_wrapper)
PatchManager.register_patch('megatron.core.optimizer.distrib_optimizer.DistributedOptimizer.__init__', distributed_optimizer_init_wrapper)
PatchManager.register_patch('megatron.training.training.setup_model_and_optimizer', setup_model_and_optimizer_wrapper)
def patch_optimizer():
if get_modellink_args().reuse_fp32_param:
from mindspeed.optimizer.optimizer import mixed_precision_optimizer_step, reuse_fp32_param_init_wrapper, \
optimizer_config_init_wrapper
from ..core.optimizer.distrib_optimizer import reuse_fp32_param_distrib_optimizer_init_wrapper
PatchManager.register_patch('megatron.core.optimizer.optimizer.MixedPrecisionOptimizer.step', mixed_precision_optimizer_step)
PatchManager.register_patch('megatron.core.optimizer.optimizer.Float16OptimizerWithFloat16Params.__init__', reuse_fp32_param_init_wrapper)
PatchManager.register_patch('megatron.core.optimizer.optimizer_config.OptimizerConfig.__init__', optimizer_config_init_wrapper)
PatchManager.register_patch('megatron.core.optimizer.distrib_optimizer.DistributedOptimizer.__init__', reuse_fp32_param_distrib_optimizer_init_wrapper)