diff --git a/README.md b/README.md
index 5da12a0c3..336d7218c 100644
--- a/README.md
+++ b/README.md
@@ -869,6 +869,13 @@ ModelLink预训练支持张量并行、流水线并行等多种加速算法和
Yes |
Yes |
+
+ 显存 |
+ 参数副本复用 |
+ --reuse-fp32-param |
+ Yes |
+ Yes |
+
通信 |
梯度reduce通算掩盖 |
diff --git a/modellink/arguments.py b/modellink/arguments.py
index 1d98700b2..0cb790a49 100644
--- a/modellink/arguments.py
+++ b/modellink/arguments.py
@@ -290,7 +290,9 @@ def _add_network_size_args(parser):
def _add_algorithm_args(parser):
group = parser.add_argument_group(title='algorithm')
group.add_argument('--rotary-base', type=float, help='rotary-base.')
-
+ group.add_argument('--reuse-fp32-param', action='store_true',
+ help='The distributed training optimizer frees up '
+ 'param copies of FP32 to save memory.')
return parser
@@ -462,6 +464,13 @@ def core_transformer_config_from_args_wrapper(fn):
return wrapper
+def _validate_optimizer(args):
+ if args.reuse_fp32_param and not args.bf16:
+ raise AssertionError('--reuse-fp32-param only support for `bf16`')
+ if args.reuse_fp32_param and args.enable_high_availability:
+ raise AssertionError('reuse-fp32-param and enable-high-availability do not support enabling together.')
+
+
def validate_args_decorator(megatron_validate_args):
@wraps(megatron_validate_args)
def wrapper(args, defaults=None):
@@ -480,6 +489,7 @@ def validate_args_decorator(megatron_validate_args):
_validate_high_availability(args)
_validate_moe_expert_capacity_factor(args)
+ _validate_optimizer(args)
from modellink.utils import print_args
print_args('ModelLink Arguments', args)
return args
diff --git a/modellink/core/optimizer/distrib_optimizer.py b/modellink/core/optimizer/distrib_optimizer.py
index 6bd6444e0..4feccea92 100644
--- a/modellink/core/optimizer/distrib_optimizer.py
+++ b/modellink/core/optimizer/distrib_optimizer.py
@@ -1,10 +1,13 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
+import types
import itertools
from functools import wraps
from typing import Callable, Dict, List, Optional, Tuple
import torch
+import torch_npu
+import torch.distributed
from apex.optimizers import FusedAdam as Adam
from megatron.training import get_args
@@ -12,6 +15,288 @@ from megatron.core.distributed import ParamAndGradBuffer
from megatron.core.optimizer.grad_scaler import MegatronGradScaler
from megatron.core.optimizer import OptimizerConfig
from megatron.core.optimizer.optimizer import MixedPrecisionOptimizer
+from mindspeed.optimizer.distrib_optimizer import _copy_model_params_to_main_params
+
+TRANSPOSE_BF16_BLOCK_SIZE = 4096 * 4096
+
+
+def reuse_fp32_param_distrib_optimizer_init_wrapper(init_func):
+ @wraps(init_func)
+ def reuse_fp32_param_distrib_optimizer_init(self, *args, **kwargs):
+ init_func(*args, **kwargs)
+ global_args = get_args()
+ self.reuse_fp32_param = global_args.reuse_fp32_param if hasattr(global_args, "reuse_fp32_param") else False
+ # A flag that disables the value subtraction when the `fp16_tensor_convert_to_fp32_tensor` function is invoked for the first time.
+ self.first_sub_flag = True
+ if self.reuse_fp32_param:
+ from mindspeed.op_builder import AlgorithmOpBuilder
+ reuse_data_ptr = AlgorithmOpBuilder().load().reuse_data_ptr
+ data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
+ data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
+ self.model_param_bucket_and_res_map = {}
+ self.model_param_bucket_and_shard_main_param_int32_view_map = {}
+ self.shard_main_param_res_buffers = []
+ self.bucket_num_groups = []
+ if data_parallel_world_size == 1:
+ self.shard_fp32_param_fp16_view_group = []
+ for buffer in self.buffers:
+ buffer_numel = buffer.param_data.numel()
+ shard_res_and_buffer_model_param = torch.zeros(buffer_numel * 2, dtype=torch.bfloat16, device=buffer.param_data.device)
+ shard_main_param_int32_view_buffer = torch.empty(buffer_numel, dtype=torch.int32, device=buffer.param_data.device)
+ reuse_data_ptr(shard_main_param_int32_view_buffer, shard_res_and_buffer_model_param, 0)
+ self.shard_main_param_res_buffers.append(shard_res_and_buffer_model_param)
+ self.model_param_bucket_and_shard_main_param_int32_view_map[shard_res_and_buffer_model_param] = shard_main_param_int32_view_buffer
+ for model_fp16_params_this_group, shard_fp32_from_float16_group in zip(
+ self.model_float16_groups, self.shard_fp32_from_float16_groups):
+ for i, (model_param, shard_fp32_main_param) in enumerate(
+ zip(model_fp16_params_this_group, shard_fp32_from_float16_group)):
+ gbuf_index, _, bucket_id = self.model_param_gbuf_map[model_param]
+ data_start_index, data_end_index, bucket_id = self.buffers[gbuf_index].param_index_map[model_param]
+ reuse_data_ptr(shard_fp32_from_float16_group[i], self.shard_main_param_res_buffers[gbuf_index], data_start_index)
+ old_param_data = model_param.data
+ model_param.data = self.shard_main_param_res_buffers[gbuf_index][data_start_index + data_end_index: 2 * data_end_index].view(old_param_data.shape)
+ model_param.data.detach().copy_(old_param_data)
+ self.shard_fp32_param_fp16_view_group.append(self.shard_main_param_res_buffers[gbuf_index][2 * data_start_index: 2 * data_end_index])
+ for i, buffer in enumerate(self.buffers):
+ buffer_numel = buffer.param_data.numel()
+ reuse_data_ptr(buffer.param_data, self.shard_main_param_res_buffers[i], buffer_numel)
+ else:
+ for buffer in self.buffers:
+ self.bucket_num_group = []
+ bucket_res_numel = 0
+ res_numel = buffer.numel // data_parallel_world_size
+ shard_main_param_res_buffer = torch.zeros(res_numel, dtype=torch.bfloat16, device=buffer.param_data.device)
+ self.shard_main_param_res_buffers.append(shard_main_param_res_buffer)
+ for bucket in buffer.buckets:
+ self.bucket_num_group.append(bucket.param_data.numel())
+ param_data_dp_numel = bucket.param_data.numel() // data_parallel_world_size
+ shard_main_param_int32_view_bucket = torch.empty(param_data_dp_numel, dtype=torch.int32, device=bucket.param_data.device)
+ reuse_data_ptr(
+ shard_main_param_int32_view_bucket,
+ buffer.param_data,
+ (bucket_res_numel * data_parallel_world_size) // 2 + max(0, data_parallel_rank - 1) * param_data_dp_numel // 2)
+ self.model_param_bucket_and_res_map[bucket.param_data] = self.shard_main_param_res_buffers[-1][bucket_res_numel: bucket_res_numel + param_data_dp_numel]
+ self.model_param_bucket_and_shard_main_param_int32_view_map[bucket.param_data] = shard_main_param_int32_view_bucket
+ bucket_res_numel += param_data_dp_numel
+ self.bucket_num_groups.append(self.bucket_num_group)
+ for model_fp16_params_this_group, shard_fp32_from_float16_group in zip(
+ self.model_float16_groups, self.shard_fp32_from_float16_groups):
+ for i, (model_param, shard_fp32_main_param) in enumerate(
+ zip(model_fp16_params_this_group, shard_fp32_from_float16_group)):
+ world_range = self._get_model_param_range_map(model_param)["gbuf_world_in_bucket"]
+ gbuf_index, _, bucket_id = self.model_param_gbuf_map[model_param]
+ model_param_buffer = self.buffers[gbuf_index].param_data
+ bucket_offset_in_buffer = sum(self.bucket_num_groups[gbuf_index][:bucket_id]) // 2
+ model_param_bucket = self.buffers[gbuf_index].buckets[bucket_id].param_data
+ model_param_bucket_numel_per_dp = model_param_bucket.numel() // data_parallel_world_size
+ shard_fp32_param_bucket_offset = world_range.start if data_parallel_rank == 0 else \
+ world_range.start - model_param_bucket_numel_per_dp * (1 + data_parallel_rank) // 2
+ shard_main_param_buffer_start = bucket_offset_in_buffer + shard_fp32_param_bucket_offset
+ reuse_data_ptr(shard_fp32_from_float16_group[i], model_param_buffer, shard_main_param_buffer_start)
+ torch_npu.npu.empty_cache()
+ self._copy_model_params_to_main_params = _copy_model_params_to_main_params
+ self.load_parameter_state_from_dp_zero_func = self.load_parameter_state_from_dp_zero
+ self.load_parameter_state_from_dp_zero = types.MethodType(load_parameter_state_from_dp_zero, self)
+ self.get_parameter_state_dp_zero_func = self.get_parameter_state_dp_zero
+ self.get_parameter_state_dp_zero = types.MethodType(get_parameter_state_dp_zero, self)
+ self.fp16_tensor_convert_to_fp32_tensor = types.MethodType(fp16_tensor_convert_to_fp32_tensor, self)
+ self.fp32_tensor_convert_to_fp16_tensor = types.MethodType(fp32_tensor_convert_to_fp16_tensor, self)
+ return reuse_fp32_param_distrib_optimizer_init
+
+
+def load_parameter_state_from_dp_zero(self, state_dict):
+ self.load_parameter_state_from_dp_zero_func(state_dict)
+ self.first_sub_flag = False
+ data_parallel_world_size = self.data_parallel_group_gloo.size()
+ data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
+ data_parallel_group_gloo = self.data_parallel_group_gloo
+ data_parallel_global_ranks = torch.distributed.get_process_group_ranks(
+ self.data_parallel_group_gloo
+ )
+ if data_parallel_world_size == 1 or \
+ not hasattr(self, "shard_main_param_res_buffers"):
+ return
+ for i, shard_main_param_res_buffer in enumerate(self.shard_main_param_res_buffers):
+ shard_res_numel = shard_main_param_res_buffer.numel()
+ if data_parallel_rank == 0:
+ send_tensors = [
+ state_dict["shard_main_param_res"][i][
+ dpr * shard_res_numel: (dpr + 1) * shard_res_numel] for dpr in range(data_parallel_world_size)
+ ]
+ else:
+ send_tensors = None
+ shard_res_numel = shard_main_param_res_buffer.numel()
+ recv_tensor = torch.empty((shard_res_numel,), dtype=torch.float16, device="cpu")
+ torch.distributed.scatter(
+ recv_tensor,
+ send_tensors,
+ data_parallel_global_ranks[0],
+ data_parallel_group_gloo,
+ )
+ recv_tensor_bf16_view = torch.tensor(recv_tensor.data.untyped_storage(), dtype=torch.bfloat16, device=recv_tensor.device)
+ shard_main_param_res_buffer.copy_(recv_tensor_bf16_view)
+
+
+def get_parameter_state_dp_zero(self):
+ state = self.get_parameter_state_dp_zero_func()
+ data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
+ data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
+ data_parallel_group_gloo = self.data_parallel_group_gloo
+ data_parallel_global_ranks = torch.distributed.get_process_group_ranks(
+ self.data_parallel_group_gloo
+ )
+ if data_parallel_world_size == 1 or not hasattr(self, "shard_main_param_res_buffers"):
+ return state
+ # gather buffer res
+ buffer_res_full_shard = []
+ for shard_main_param_res_buffer in self.shard_main_param_res_buffers:
+ if data_parallel_rank == 0:
+ recv_tensors = [torch.empty((shard_main_param_res_buffer.numel(),), dtype=torch.float16, device="cpu") for _ in range(data_parallel_world_size)]
+ else:
+ recv_tensors = None
+ send_tensor = torch.empty((shard_main_param_res_buffer.numel(),), dtype=torch.float16, device="cpu")
+ send_tensor_bf16_view = torch.tensor(send_tensor.data.untyped_storage(), dtype=torch.bfloat16, device=send_tensor.device)
+ send_tensor_bf16_view.copy_(shard_main_param_res_buffer.detach().cpu())
+ torch.distributed.gather(
+ send_tensor,
+ recv_tensors,
+ data_parallel_global_ranks[0],
+ data_parallel_group_gloo,
+ )
+ if data_parallel_rank == 0:
+ buffer_res_full_shard.append(torch.cat(recv_tensors))
+ state['shard_main_param_res'] = buffer_res_full_shard
+ return state
+
+
+def fp16_tensor_convert_to_fp32_tensor(self):
+ """
+ res(0000) + bf16(pppp) -> fp32(0p0p0p0p)
+
+ Transform the bf16 data and residuals data in the continuous memory block
+ into the fp32 tensor through view transposition.
+ """
+ data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
+ data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
+ if data_parallel_world_size == 1:
+ for shard_fp32_param_fp16_view in self.shard_fp32_param_fp16_view_group:
+ shard_fp32_param_fp16_view.copy_(
+ shard_fp32_param_fp16_view.view(2, -1).transpose(1, 0).reshape(-1).contiguous())
+
+ for shard_res_and_buffer_model_param in self.shard_main_param_res_buffers:
+ shard_main_param_int32_view_buffer = self.model_param_bucket_and_shard_main_param_int32_view_map[
+ shard_res_and_buffer_model_param]
+ if not self.first_sub_flag:
+ shard_main_param_int32_view_buffer.sub_(32768)
+ else:
+ for buffer in self.buffers:
+ for bucket in buffer.buckets:
+ bucket_param_data = bucket.param_data
+ param_data_dp_numel = bucket_param_data.numel() // data_parallel_world_size
+ bucket_res = self.model_param_bucket_and_res_map[bucket_param_data]
+ if data_parallel_rank == 0:
+ bucket_param_data[param_data_dp_numel:param_data_dp_numel * 2].copy_(
+ bucket_param_data[:param_data_dp_numel])
+ bucket_res_position = max(0, data_parallel_rank - 1) * param_data_dp_numel
+ shard_fp32_main_param_view = bucket_param_data[
+ bucket_res_position: bucket_res_position + param_data_dp_numel * 2]
+ shard_main_param_int32_view_bucket = self.model_param_bucket_and_shard_main_param_int32_view_map[
+ bucket_param_data]
+
+ loops = param_data_dp_numel // TRANSPOSE_BF16_BLOCK_SIZE
+ remain = param_data_dp_numel % TRANSPOSE_BF16_BLOCK_SIZE
+ workspace = torch.zeros(
+ TRANSPOSE_BF16_BLOCK_SIZE * 2, dtype=torch.bfloat16, device=bucket_res.device)
+ residual_space = bucket_res
+ bf16_space_dp_rank = max(1, data_parallel_rank)
+ bf16_space = bucket_param_data[
+ param_data_dp_numel * bf16_space_dp_rank:param_data_dp_numel * (bf16_space_dp_rank + 1)]
+
+ for loop in range(loops):
+ copy_start = loop * TRANSPOSE_BF16_BLOCK_SIZE
+ copy_end = (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE
+ workspace_convert_view = workspace[:TRANSPOSE_BF16_BLOCK_SIZE * 2]
+ workspace[:TRANSPOSE_BF16_BLOCK_SIZE].copy_(residual_space[copy_start: copy_end])
+ workspace[TRANSPOSE_BF16_BLOCK_SIZE:TRANSPOSE_BF16_BLOCK_SIZE * 2].copy_(
+ bf16_space[copy_start: copy_end])
+ shard_fp32_main_param_view[copy_start * 2: copy_end * 2].copy_(
+ workspace_convert_view.view(2, -1).transpose(1, 0).reshape(-1).contiguous())
+
+ if remain > 0:
+ workspace_convert_view = workspace[:remain * 2]
+ workspace[:remain].copy_(residual_space[-remain:])
+ workspace[remain:remain * 2].copy_(bf16_space[-remain:])
+ shard_fp32_main_param_view[-remain * 2:].copy_(
+ workspace_convert_view.view(2, -1).transpose(1, 0).reshape(-1).contiguous())
+
+ if not self.first_sub_flag:
+ shard_main_param_int32_view_bucket[:param_data_dp_numel].sub_(32768)
+
+
+def fp32_tensor_convert_to_fp16_tensor(self):
+ """
+ fp32(0p0p0p0p) -> fp32(0'p0'p0'p0'p) -> res(0000) + bf16(pppp)
+
+ Transform the fp32 tensor in the continuous memory block
+ into the bf16 data and residual through view transposition.
+ """
+ data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
+ data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
+ if data_parallel_world_size == 1:
+ for shard_res_and_buffer_model_param in self.shard_main_param_res_buffers:
+ shard_main_param_int32_view_buffer = self.model_param_bucket_and_shard_main_param_int32_view_map[
+ shard_res_and_buffer_model_param]
+ shard_main_param_int32_view_buffer.add_(32768)
+ self.first_sub_flag = False
+
+ for shard_fp32_param_fp16_view in self.shard_fp32_param_fp16_view_group:
+ shard_fp32_param_fp16_view.copy_(
+ shard_fp32_param_fp16_view.view(-1, 2).transpose(1, 0).reshape(-1).contiguous())
+ else:
+ for buffer in self.buffers:
+ for bucket in buffer.buckets:
+ bucket_param_data = bucket.param_data
+ param_data_dp_numel = bucket_param_data.numel() // data_parallel_world_size
+ bucket_res = self.model_param_bucket_and_res_map[bucket_param_data]
+ shard_main_param_int32_view_bucket = self.model_param_bucket_and_shard_main_param_int32_view_map[
+ bucket_param_data]
+ shard_main_param_int32_view_bucket[:param_data_dp_numel].add_(32768)
+ self.first_sub_flag = False
+
+ bucket_res_position = max(0, data_parallel_rank - 1) * param_data_dp_numel
+ shard_fp32_main_param_view = bucket_param_data[
+ bucket_res_position: bucket_res_position + param_data_dp_numel * 2]
+
+ loops = param_data_dp_numel // TRANSPOSE_BF16_BLOCK_SIZE
+ remain = param_data_dp_numel % TRANSPOSE_BF16_BLOCK_SIZE
+ workspace = torch.zeros(
+ TRANSPOSE_BF16_BLOCK_SIZE * 2, dtype=torch.bfloat16, device=bucket_res.device)
+ bf16_space_dp_rank = max(0, data_parallel_rank - 1)
+ residual_space = bucket_res
+ bf16_space = bucket_param_data[
+ param_data_dp_numel * bf16_space_dp_rank:param_data_dp_numel * (bf16_space_dp_rank + 1)]
+
+ for loop in range(loops):
+ workspace_convert_view = workspace[:TRANSPOSE_BF16_BLOCK_SIZE * 2]
+ workspace_convert_view.copy_(
+ shard_fp32_main_param_view[
+ loop * TRANSPOSE_BF16_BLOCK_SIZE * 2: (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE * 2])
+ temp = workspace_convert_view.view(-1, 2).transpose(1, 0).reshape(-1).contiguous()
+ residual_space[loop * TRANSPOSE_BF16_BLOCK_SIZE: (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE].copy_(
+ temp[:TRANSPOSE_BF16_BLOCK_SIZE])
+ bf16_space[loop * TRANSPOSE_BF16_BLOCK_SIZE: (loop + 1) * TRANSPOSE_BF16_BLOCK_SIZE].copy_(
+ temp[TRANSPOSE_BF16_BLOCK_SIZE: TRANSPOSE_BF16_BLOCK_SIZE * 2])
+
+ if remain > 0:
+ workspace_convert_view = workspace[:remain * 2]
+ workspace_convert_view.copy_(shard_fp32_main_param_view[-remain * 2:])
+ temp = workspace_convert_view.view(-1, 2).transpose(1, 0).reshape(-1).contiguous()
+ residual_space[-remain:].copy_(temp[:remain])
+ bf16_space[-remain:].copy_(temp[remain: remain * 2])
+
+ if data_parallel_rank != 0:
+ shard_fp32_main_param_view[param_data_dp_numel:param_data_dp_numel * 2].copy_(
+ shard_fp32_main_param_view[:param_data_dp_numel])
def distributed_optimizer_init(
diff --git a/modellink/patchs/megatron_patch.py b/modellink/patchs/megatron_patch.py
index e6648d2f1..9637431dc 100644
--- a/modellink/patchs/megatron_patch.py
+++ b/modellink/patchs/megatron_patch.py
@@ -89,6 +89,7 @@ def patch_megatron_noncore():
patch_training()
patch_log_handler()
patch_high_availability_feature()
+ patch_optimizer()
def patch_fusions():
@@ -312,3 +313,14 @@ def patch_high_availability_feature():
PatchManager.register_patch('megatron.core.optimizer.optimizer.clip_grad_norm_fp32', clip_grad_norm_fp32_wrapper)
PatchManager.register_patch('megatron.core.optimizer.distrib_optimizer.DistributedOptimizer.__init__', distributed_optimizer_init_wrapper)
PatchManager.register_patch('megatron.training.training.setup_model_and_optimizer', setup_model_and_optimizer_wrapper)
+
+
+def patch_optimizer():
+ if get_modellink_args().reuse_fp32_param:
+ from mindspeed.optimizer.optimizer import mixed_precision_optimizer_step, reuse_fp32_param_init_wrapper, \
+ optimizer_config_init_wrapper
+ from ..core.optimizer.distrib_optimizer import reuse_fp32_param_distrib_optimizer_init_wrapper
+ PatchManager.register_patch('megatron.core.optimizer.optimizer.MixedPrecisionOptimizer.step', mixed_precision_optimizer_step)
+ PatchManager.register_patch('megatron.core.optimizer.optimizer.Float16OptimizerWithFloat16Params.__init__', reuse_fp32_param_init_wrapper)
+ PatchManager.register_patch('megatron.core.optimizer.optimizer_config.OptimizerConfig.__init__', optimizer_config_init_wrapper)
+ PatchManager.register_patch('megatron.core.optimizer.distrib_optimizer.DistributedOptimizer.__init__', reuse_fp32_param_distrib_optimizer_init_wrapper)
\ No newline at end of file