!1793 添加Qwen2.5-1.5B模型

Merge pull request !1793 from caoruichao/master
This commit is contained in:
caoruichao 2024-10-26 06:38:36 +00:00 committed by i-robot
parent bf92daf093
commit 45ca70b2aa
8 changed files with 255 additions and 6 deletions

View File

@ -42,7 +42,7 @@ MindSpeed-LLM 已支持的大模型评估数据统计如下:
| QWen2-0.5B | MMLU | 44.6% | [45.4%](https://qwenlm.github.io/zh/blog/qwen2/) | QWen2-1.5B | MMLU | 54.7% | [56.5%](https://qwenlm.github.io/zh/blog/qwen2/) |
| QWen2-7B | MMLU | 70.3% | [70.3%](https://qwenlm.github.io/zh/blog/qwen2/) | QWen2-57B-A14B |MMLU|75.6% | [76.5%](https://qwenlm.github.io/zh/blog/qwen2/)|
| QWen2-72B | MMLU | 83.6% | [84.2%](https://qwenlm.github.io/zh/blog/qwen2/)| MiniCPM-2B | MMLU | 51.6% | [53.4%](https://github.com/OpenBMB/MiniCPM?tab=readme-ov-file#3) |
| DeepSeek-V2-Lite-16B | MMLU | 57.4% | [58.3%](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) |
| DeepSeek-V2-Lite-16B | MMLU | 57.4% | [58.3%](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) | QWen2.5-1.5B | MMLU | 59.4% | [60.9%](https://qwenlm.github.io/blog/qwen2.5-llm/) |
| QWen2.5-3B | MMLU | 65.6% | [65.6%](https://qwenlm.github.io/blog/qwen2.5-llm/) | QWen2.5-7B | MMLU | 73.8% | [74.2%](https://qwenlm.github.io/blog/qwen2.5-llm/) |
| QWen2.5-14B | MMLU | 79.4% | [79.7%](https://qwenlm.github.io/blog/qwen2.5-llm/) |

View File

@ -449,7 +449,14 @@
<td>【Test】</td>
</tr>
<tr>
<td rowspan="4"><a href="https://huggingface.co/Qwen">Qwen2.5</a></td>
<td rowspan="5"><a href="https://huggingface.co/Qwen">Qwen2.5</a></td>
<td><a href="https://huggingface.co/Qwen/Qwen2.5-1.5B/tree/main">1.5B</a></td>
<td> 32K </td>
<th>Mcore</th>
<td>1x8</td>
<td>【GTS】</td>
<td>【Test】</td>
</tr>
<td><a href="https://huggingface.co/Qwen/Qwen2.5-3B/tree/main">3B</a></td>
<td> 32K </td>
<th>Mcore</th>

View File

@ -0,0 +1,69 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6003
NNODES=1
NODE_RANK=0
NPUS_PER_NODE=1
WORLD_SIZE=$(($NPUS_PER_NODE*$NNODES))
# please fill these path configurations
CHECKPOINT="Your ckpt file path"
TOKENIZER_PATH="Your vocab file path"
DATA_PATH="Your data path (such as ./mmlu/test/)"
TASK="mmlu"
TP=1
PP=1
MBS=1
SEQ_LEN=32768
DISTRIBUTED_ARGS="
--nproc_per_node $NPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
# Different task needs different max_new_tokens value, please follow the instruction in readme.
torchrun $DISTRIBUTED_ARGS evaluation.py \
--use-mcore-models \
--task-data-path $DATA_PATH \
--task ${TASK} \
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size ${PP} \
--micro-batch-size ${MBS} \
--seq-length ${SEQ_LEN} \
--max-position-embeddings ${SEQ_LEN} \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path ${TOKENIZER_PATH} \
--max-new-tokens 1 \
--make-vocab-size-divisible-by 1 \
--padded-vocab-size 151936 \
--rotary-base 1000000 \
--num-layers 28 \
--hidden-size 1536 \
--ffn-hidden-size 8960 \
--num-attention-heads 12 \
--group-query-attention \
--num-query-groups 2 \
--add-qkv-bias \
--disable-bias-linear \
--swiglu \
--position-embedding-type rope \
--load ${CHECKPOINT} \
--normalization RMSNorm \
--norm-epsilon 1e-06 \
--tokenizer-not-use-fast \
--exit-on-missing-checkpoint \
--no-load-rng \
--no-load-optim \
--no-gradient-accumulation-fusion \
--attention-softmax-in-fp32 \
--seed 42 \
--bf16 \
--no-chat-template \
| tee logs/eval_mcore_qwen25_1point5b_${TASK}.log

View File

@ -36,7 +36,7 @@ torchrun $DISTRIBUTED_ARGS evaluation.py \
--seq-length ${SEQ_LENGTH} \
--max-position-embeddings ${SEQ_LENGTH} \
--max-new-tokens 1 \
--num-layers 60 \
--num-layers 64 \
--hidden-size 5120 \
--ffn-hidden-size 27648 \
--num-attention-heads 40 \

View File

@ -0,0 +1,63 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6002
NNODES=1
NODE_RANK=0
NPUS_PER_NODE=1
WORLD_SIZE=$(($NPUS_PER_NODE*$NNODES))
# please fill these path configurations
CHECKPOINT="your model ckpt path"
TOKENIZER_PATH="your tokenizer path"
TP=1
PP=1
MBS=1
SEQ_LEN=32768
DISTRIBUTED_ARGS="
--nproc_per_node $NPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
torchrun $DISTRIBUTED_ARGS inference.py \
--use-mcore-models \
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size ${PP} \
--num-layers 28 \
--hidden-size 1536 \
--ffn-hidden-size 8960 \
--num-attention-heads 12 \
--group-query-attention \
--num-query-groups 2 \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path ${TOKENIZER_PATH} \
--max-position-embeddings ${SEQ_LEN} \
--seq-length ${SEQ_LEN} \
--make-vocab-size-divisible-by 1 \
--padded-vocab-size 151936 \
--rotary-base 1000000 \
--micro-batch-size ${MBS} \
--swiglu \
--add-qkv-bias \
--disable-bias-linear \
--load ${CHECKPOINT} \
--normalization RMSNorm \
--norm-epsilon 1e-6 \
--position-embedding-type rope \
--hidden-dropout 0 \
--attention-dropout 0 \
--tokenizer-not-use-fast \
--max-new-tokens 256 \
--no-gradient-accumulation-fusion \
--exit-on-missing-checkpoint \
--attention-softmax-in-fp32 \
--seed 42 \
--bf16 \
| tee logs/generate_mcore_qwen25_1point5b.log

View File

@ -30,7 +30,7 @@ torchrun $DISTRIBUTED_ARGS inference.py \
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size ${PP} \
--load ${CHECKPOINT} \
--num-layers 60 \
--num-layers 64 \
--hidden-size 5120 \
--num-attention-heads 40 \
--group-query-attention \

View File

@ -0,0 +1,110 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6001
NNODES=1
NODE_RANK=0
NPUS_PER_NODE=8
WORLD_SIZE=$(($NPUS_PER_NODE*$NNODES))
# please fill these path configurations
CKPT_LOAD_DIR="your model ckpt path"
CKPT_SAVE_DIR="your model save ckpt path"
DATA_PATH="your data path"
TOKENIZER_PATH="your tokenizer path"
TP=1
PP=1
CP=4
MBS=1
GBS=16
SEQ_LEN=32768
CP_ALGO=megatron_cp_algo
DISTRIBUTED_ARGS="
--nproc_per_node $NPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
GPT_ARGS="
--use-mcore-models \
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size ${PP} \
--context-parallel-size ${CP} \
--context-parallel-algo ${CP_ALGO} \
--sequence-parallel \
--num-layers 28 \
--hidden-size 1536 \
--ffn-hidden-size 8960 \
--num-attention-heads 12 \
--group-query-attention \
--num-query-groups 2 \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path ${TOKENIZER_PATH} \
--seq-length ${SEQ_LEN} \
--max-position-embeddings ${SEQ_LEN} \
--micro-batch-size ${MBS} \
--global-batch-size ${GBS} \
--make-vocab-size-divisible-by 1 \
--padded-vocab-size 151936 \
--rotary-base 1000000 \
--train-iters 2000 \
--lr 1.25e-6 \
--min-lr 1.25e-7 \
--weight-decay 1e-1 \
--lr-decay-style cosine \
--lr-warmup-fraction 0.01 \
--clip-grad 1.0 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--add-qkv-bias \
--disable-bias-linear \
--attention-dropout 0.0 \
--init-method-std 0.01 \
--hidden-dropout 0.0 \
--position-embedding-type rope \
--normalization RMSNorm \
--norm-epsilon 1e-06 \
--swiglu \
--use-distributed-optimizer \
--use-flash-attn \
--use-fused-rotary-pos-emb \
--use-rotary-position-embeddings \
--use-fused-swiglu \
--use-fused-rmsnorm \
--overlap-grad-reduce \
--no-masked-softmax-fusion \
--attention-softmax-in-fp32 \
--initial-loss-scale 4096 \
--no-gradient-accumulation-fusion \
--no-load-optim \
--no-load-rng \
--seed 42 \
--bf16
"
DATA_ARGS="
--data-path $DATA_PATH \
--split 100,0,0
"
OUTPUT_ARGS="
--log-interval 1 \
--save-interval 1000 \
--eval-interval 1000 \
--eval-iters 0 \
"
torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl \
--load ${CKPT_LOAD_DIR} \
--save ${CKPT_SAVE_DIR} \
| tee logs/train_mcore_qwen25_1point5b_32k.log

View File

@ -18,7 +18,7 @@ TOKENIZER_PATH="your tokenizer path"
TP=1
PP=2
CP=4
MBS=4
MBS=1
GBS=16
SEQ_LEN=32768
CP_ALGO=megatron_cp_algo