!1240 GPT3-175B 整理上库

Merge pull request !1240 from guoxinjie/gelu
This commit is contained in:
guoxinjie 2024-05-27 02:34:20 +00:00 committed by i-robot
parent 371a159c4d
commit 62c40eef76
8 changed files with 488 additions and 2 deletions

View File

@ -390,6 +390,17 @@ ModelLink旨在为华为 [昇腾芯片](https://open.codehub.huawei.com/OpenBaiz
<td> <a href="examples/gemma/evaluate_gemma_7b_ptd.sh">eval </a></td>
<td> 【昇腾贡献】 </td>
</tr>
<tr>
<td rowspan="1"><a href="examples/gpt3/README.md">GPT3</a></td>
<td>175B</td>
<td> <a href="examples/gpt3/pretrain_gpt3_175B_ptd.sh"> pretrain </a> </td>
<td> -- </td>
<td> -- </td>
<td> -- </td>
<td> -- </td>
<td> -- </td>
<td> 【社区贡献】 </td>
</tr>
</tbody>
</table>
@ -679,6 +690,14 @@ ModelLink旨在为华为 [昇腾芯片](https://open.codehub.huawei.com/OpenBaiz
<td> 2938 </td>
<td> 2607 </td>
</tr>
<tr>
<td rowspan="1"><a href="examples/gpt3/README.md">GPT3</a></td>
<td>175B</td>
<td> 16x8 </td>
<td> FP16 </td>
<td> 153 </td>
<td> -- </td>
</tr>
</tbody>
</table>

View File

@ -389,6 +389,17 @@ Current ModelLink supports pre-training and fine-tuning for the following models
<td> <a href="examples/gemma/evaluate_gemma_7b_ptd.sh">eval </a></td>
<td> 【Ascend】 </td>
</tr>
<tr>
<td rowspan="1"><a href="examples/gpt3/README.md">GPT3</a></td>
<td>175B</td>
<td> <a href="examples/gpt3/pretrain_gpt3_175B_ptd.sh"> pretrain </a> </td>
<td> -- </td>
<td> -- </td>
<td> -- </td>
<td> -- </td>
<td> -- </td>
<td> 【Community】 </td>
</tr>
</tbody>
</table>
@ -678,6 +689,14 @@ For the supported models listed above, we provide training scripts and readme in
<td> 2938 </td>
<td> 2607 </td>
</tr>
<tr>
<td rowspan="1"><a href="examples/gpt3/README.md">GPT3</a></td>
<td>175B</td>
<td> 16x8 </td>
<td> FP16 </td>
<td> 153 </td>
<td> -- </td>
</tr>
</tbody>
</table>

View File

@ -46,9 +46,10 @@ GPT_ARGS="
--attention-softmax-in-fp32 \
--apply-query-key-layer-scaling \
--lr 1.2e-4 \
--train-iters 200 \
--train-iters 2000 \
--init-method-std 0.0048 \
--hidden-dropout 0.0 \
--attention-dropout 0.0 \
--position-embedding-type alibi \
--normalization LayerNorm \
--min-lr 6e-6 \

View File

@ -0,0 +1,87 @@
#!/bin/bash
# Runs the "175B" parameter model in deminishing layers for single machine
export COMBINED_ENABLE=1
export CUDA_DEVICE_MAX_CONNECTIONS=1
export AZUREML_EXPERIMENT_ID=0
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6001
NUM_NODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NUM_NODES))
DATA_PATH="your dataset path"
VOCAB_FILE="vocab file for gpt"
MERGE_FILE="merge file for gpt"
TP=8
PP=1
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NUM_NODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
--node_rank $NODE_RANK
"
GPT_ARGS="
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size ${PP} \
--sequence-parallel \
--num-layers 8 \
--hidden-size 12288 \
--num-attention-heads 96 \
--seq-length 2048 \
--max-position-embeddings 2048 \
--transformer-impl local \
--micro-batch-size 1 \
--global-batch-size 64 \
--train-iters 2000 \
--weight-decay 0.1 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--initial-loss-scale 4096 \
--init-method-std 0.006 \
--clip-grad 1.0 \
--fp16 \
--lr 6.0e-5 \
--lr-decay-style cosine \
--min-lr 6.0e-6 \
--lr-warmup-fraction .001 \
--lr-decay-iters 430000 \
--no-load-optim \
--no-load-rng \
--no-gradient-accumulation-fusion \
--no-masked-softmax-fusion \
--attention-softmax-in-fp32 \
--attention-dropout 0.0 \
--hidden-dropout 0.0 \
--use-flash-attn \
--no-bias-gelu-fusion \
--use-mc2
"
DATA_ARGS="
--data-path $DATA_PATH
--vocab-file $VOCAB_FILE
--merge-file $MERGE_FILE
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 1
--eval-interval 5000
--eval-iters 1
"
torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl 2>&1
| tee ./logs/pretrain_gpt3_175B_8layers.log

View File

@ -0,0 +1,88 @@
#!/bin/bash
# Runs the "175B" parameter model in full layers.
export COMBINED_ENABLE=1
export CUDA_DEVICE_MAX_CONNECTIONS=1
export AZUREML_EXPERIMENT_ID=0
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6001
NUM_NODES=16
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NUM_NODES))
DATA_PATH="your dataset path"
VOCAB_FILE="vocab file for gpt training"
MERGE_FILE="merge file for gpt training"
TP=8
PP=16
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NUM_NODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
--node_rank $NODE_RANK
"
GPT_ARGS="
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size ${PP} \
--num-layers-per-virtual-pipeline-stage 2 \
--sequence-parallel \
--num-layers 96 \
--hidden-size 12288 \
--num-attention-heads 96 \
--seq-length 2048 \
--max-position-embeddings 2048 \
--transformer-impl local \
--micro-batch-size 2 \
--global-batch-size 1024 \
--train-iters 2000 \
--weight-decay 0.1 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--initial-loss-scale 4096 \
--init-method-std 0.006 \
--clip-grad 1.0 \
--fp16 \
--lr 6.0e-5 \
--lr-decay-style cosine \
--min-lr 6.0e-6 \
--lr-warmup-fraction .001 \
--lr-decay-iters 430000 \
--no-load-optim \
--no-load-rng \
--no-gradient-accumulation-fusion \
--no-masked-softmax-fusion \
--no-bias-gelu-fusion \
--attention-softmax-in-fp32 \
--attention-dropout 0.0 \
--hidden-dropout 0.0 \
--use-flash-attn \
--overlap-grad-reduce \
--use-mc2
"
DATA_ARGS="
--data-path $DATA_PATH
--vocab-file $VOCAB_FILE
--merge-file $MERGE_FILE
--split 949,50,1
"
OUTPUT_ARGS="
--log-interval 1
--eval-interval 5000
--eval-iters 1
"
torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
$GPT_ARGS \
$DATA_ARGS \
$OUTPUT_ARGS \
--distributed-backend nccl 2>&1
| tee ./logs/pretrain_gpt3_175B.log

136
examples/gpt3/readme.md Normal file
View File

@ -0,0 +1,136 @@
# GPT3 $\color{black}{\bf\tiny{【社区贡献模型】}}$
<p align="left">
<b>简体中文</b> |
<b><a href="README.md">English</a> </b>
</p>
# 目录
- [GPT3](#GPT3)
- [目录](#目录)
- [GPT3-175B](#GPT3-175B)
- [训练-175B](#训练)
- [脚本](#脚本)
- [性能](#性能)
- [吞吐](#吞吐)
# GPT3-175B
## 训练
GPT3-175B 训练的硬件配置:
| 硬件 | 配置 |
| :--: | :-------------: |
| NPU | 128 x Ascend NPUs |
### 脚本
1. 克隆仓库到本地服务器:
```shell
git clone https://gitee.com/ascend/ModelLink.git
git clone https://github.com/NVIDIA/Megatron-LM.git
cd Megatron-LM
git checkout -f bcce6f
cp -r megatron ../ModelLink/
cd ..
cd ModelLink
mkdir logs
mkdir vocab_file
mkdir dataset
```
2. 搭建环境
```bash
# python3.8
conda create -n test python=3.8
conda activate test
# 安装 torch 和 torch_npu
pip install torch-2.1.0-cp38-cp38m-manylinux2014_aarch64.whl
pip install torch_npu-2.1.0*-cp38-cp38m-linux_aarch64.whl
pip install apex-0.1_ascend*-cp38-cp38m-linux_aarch64.whl
# 修改 ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 安装 AscendSpeed
git clone https://gitee.com/ascend/AscendSpeed.git
cd AscendSpeed
git checkout 224ae35e8fc96778f957029d1371ddb623452a50
pip install -r requirements.txt
pip3 install -e .
cd ..
# 安装其他依赖
pip install -r requirements.txt
```
3. 准备数据、词表来拉起模型
3.1 准备数据
可以从 [这里](https://huggingface.co/datasets/wikipedia/tree/main/data/20220301.en) 下载原始数据
```shell
# 下载 enwiki 数据
# 总共有 41 个文件,我们可以选择部分来制作数据
cd ./dataset
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00000-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00001-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00002-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00003-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00004-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00005-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00006-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00007-of-00041.parquet
cd ..
# 下载 vocab file 和 merge table
cd vocab_file
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
cd ..
# 处理成训练数据
python ./tools/preprocess_data.py \
--input ./dataset/ \
--output-prefix ./dataset/gpt_text_sentence \
--tokenizer-type GPT2BPETokenizer \
--vocab-file ./vocab_file/gpt2-vocab.json \
--merge-file ./vocab_file/gpt2-merges.txt \
--append-eod \
--workers 4 \
--log-interval 1000
```
3.2 用 ptd 模式进行预训练
配置 GPT3-175B PTD 预训练脚本: examples/gpt3/pretrain_gpt3_175B.sh
```shell
# 请根据真实情况配置 ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 请根据真实存放路径配置以下参数
VOCAB_FILE="./vocab_file/gpt2-vocab.json" # 词表
MERGE_FILE="./vocab_file/gpt2-merges.txt" # BPE 合并表
DATA_PATH="./dataset/gpt_text_sentence" # 数据路径
```
拉起 GPT3-175B PTD 预训练脚本: examples/gpt3/pretrain_gpt3_175B.sh
```shell
bash examples/gpt3/pretrain_gpt3_175B.sh
```
### 性能
#### 吞吐
GPT3-175B 在 **昇腾芯片**上的性能数据:
| 设备 | 模型 | tokens吞吐 (tokens/s/p) |
| :--: | :--------: |:---------------------:|
| NPUs | GPT3-175B | 153.1 |

136
examples/gpt3/readme_en.md Normal file
View File

@ -0,0 +1,136 @@
# GPT3 $\color{black}{\rm\tiny{【model}}$ $\color{black}{\rm\tiny{contributed}}$ $\color{black}{\rm\tiny{by}}$ $\color{black}{\rm\tiny{Community】}}$
<p align="left">
<b>English</b> |
<b><a href="README_en.md">English</a> </b>
</p>
# Contents
- [GPT3](#GPT3)
- [Contents](#contents)
- [GPT3-175B](#GPT3-175B)
- [Training-175B](#training)
- [Script](#script)
- [Perforfance](#performance)
- [Machine performance](#machine-performance)
# GPT3-175B
## Training
Here is a hardware summary of pre-trianing GPT3-175B:
| Hardware | Value |
| :--: | :-------------: |
| NPU | 128 x Ascend NPUs |
### Script
1. Clone repository to your local server:
```shell
git clone https://gitee.com/ascend/ModelLink.git
git clone https://github.com/NVIDIA/Megatron-LM.git
cd Megatron-LM
git checkout -f bcce6f
cp -r megatron ../ModelLink/
cd ..
cd ModelLink
mkdir logs
mkdir vocab_file
mkdir dataset
```
2. Build environment
```bash
# python3.8
conda create -n test python=3.8
conda activate test
# install torch and torch_npu
pip install torch-2.1.0-cp38-cp38m-manylinux2014_aarch64.whl
pip install torch_npu-2.1.0*-cp38-cp38m-linux_aarch64.whl
pip install apex-0.1_ascend*-cp38-cp38m-linux_aarch64.whl
# modify ascend-toolkit path
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# install AscendSpeed
git clone https://gitee.com/ascend/AscendSpeed.git
cd AscendSpeed
git checkout 224ae35e8fc96778f957029d1371ddb623452a50
pip install -r requirements.txt
pip3 install -e .
cd ..
# install other packages
pip install -r requirements.txt
```
3. Prepare dataset and vocab file for pretrain
3.1 Prepare dataset
Download the GPT raw dataset from [here](https://huggingface.co/datasets/wikipedia/tree/main/data/20220301.en)
```shell
# download enwiki raw data
# There are 41 files in total, we can just select part to make our datasets.
cd ./dataset
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00000-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00001-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00002-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00003-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00004-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00005-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00006-of-00041.parquet
wget https://huggingface.co/datasets/wikipedia/blob/main/data/20220301.en/train-00007-of-00041.parquet
cd ..
# download vocab file and merge table
cd vocab_file
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
cd ..
# process formal dataset
python ./tools/preprocess_data.py \
--input ./dataset/ \
--output-prefix ./dataset/gpt_text_sentence \
--tokenizer-type GPT2BPETokenizer \
--vocab-file ./vocab_file/gpt2-vocab.json \
--merge-file ./vocab_file/gpt2-merges.txt \
--append-eod \
--workers 4 \
--log-interval 1000
```
3.2 pre-training in ptd mode
Config GPT3-175B PTD pre-training script: examples/gpt3/pretrain_gpt3_175B.sh
```shell
# modify ascend-toolkit path according to your own config
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# modify config according to your own actual situation
VOCAB_FILE="./vocab_file/gpt2-vocab.json" # vocab file for training
MERGE_FILE="./vocab_file/gpt2-merges.txt" # BPE merge file for training
DATA_PATH="./dataset/gpt_text_sentence" # dataset path
```
Launch GPT3-175B PTD pre-training script: examples/gpt3/pretrain_gpt3_175B.sh
```shell
bash examples/gpt3/pretrain_gpt3_175B.sh
```
### Performance
#### Machine performance
The performance of GPT3-175B in **Ascend NPU**
| device | model | tokens capacity (tokens/s/p) |
| :--: | :--------: |:---------------------:|
| NPUs | GPT3-175B | 153.1 |

View File

@ -420,7 +420,7 @@ class FlashSelfAttention(torch.nn.Module):
"""Implements the multihead softmax attention.
Arguments
---------
q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
q, k, v: The tensor containing the query, key, and value. (S, B, H, D)
"""
args = get_args()