# coding=utf-8 # Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import torch import torch_npu import megatron from megatron.core import mpu from megatron.training import get_args, print_rank_0 from megatron.training.arguments import validate_args from megatron.training.yaml_arguments import validate_yaml from megatron.training.checkpointing import load_args_from_checkpoint from megatron.training.global_vars import set_global_variables from megatron.training.initialize import ( _initialize_distributed, _set_random_seed, _init_autoresume, _initialize_tp_communicators, _warmup_jit_function ) from modellink.arguments import parse_args_decorator from modellink.core.tensor_parallel.ascend_turbo.initialize import initialize_cfg_from_args from modellink.error_utils import ensure_valid from modellink.utils import seed_all def _compile_dependencies(): device_count = torch.cuda.device_count() if device_count == 0: raise ZeroDivisionError if torch.distributed.get_rank() % device_count == 0: start_time = time.time() print('> compiling dataset index builder ...') from megatron.core.datasets.utils import compile_helpers compile_helpers() print('>>> done with dataset index builder. Compilation time: {:.3f} ' 'seconds'.format(time.time() - start_time), flush=True) def initialize_megatron( extra_args_provider=None, args_defaults={}, ignore_unknown_args=False, allow_no_cuda=False, skip_mpu_initialization=False, ): """Set global variables, initialize distributed, and set autoresume and random seeds. `allow_no_cuda` should not be set unless using megatron for cpu only data processing. In general this arg should not be set unless you know what you are doing. Returns a function to finalize distributed env initialization (optionally, only when args.lazy_mpu_init == True) """ if not allow_no_cuda: # Make sure cuda is available. ensure_valid(torch.cuda.is_available(), "Megatron requires CUDA.") # Parse arguments parse_args = parse_args_decorator(megatron.training.arguments.parse_args) args = parse_args(extra_args_provider, ignore_unknown_args) if args.use_checkpoint_args or args_defaults.get("use_checkpoint_args", False): ensure_valid(args.load is not None, "--use-checkpoints-args requires --load argument") load_args_from_checkpoint(args) if args.yaml_cfg is not None: args = validate_yaml(args, args_defaults) else: validate_args(args, args_defaults) # set global args, build tokenizer, and set adlr-autoresume, # tensorboard-writer, and timers. set_global_variables(args) # add deterministic computing function if args.use_deter_comp: seed_all(args.seed) print_rank_0("deterministic computing is applied for npu.") # torch.distributed initialization def finish_mpu_init(): args = get_args() # Pytorch distributed. _initialize_distributed() # Random seeds for reproducibility. if args.rank == 0: print("> setting random seeds to {} ...".format(args.seed)) _set_random_seed(args.seed, args.data_parallel_random_init) if args.use_mc2: initialize_cfg_from_args(args) if skip_mpu_initialization: return None args = get_args() if args.lazy_mpu_init: args.use_cpu_initialization = True # delayed initialization of DDP-related stuff # We only set basic DDP globals mpu.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size) # and return function for external DDP manager # to call when it has DDP initialized mpu.set_tensor_model_parallel_rank(args.rank) return finish_mpu_init else: # Megatron's MPU is the master. Complete initialization right away. finish_mpu_init() # Autoresume. _init_autoresume() # Compile dependencies. _compile_dependencies() if args.tp_comm_overlap: _initialize_tp_communicators() # No continuation function return None def set_jit_fusion_options(): """Set PyTorch JIT layer fusion options.""" # flags required to enable jit fusion kernels torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(True) torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._debug_set_autodiff_subgraph_inlining(False) _warmup_jit_function() args = get_args() if args.jit_compile: torch_npu.npu.set_compile_mode(jit_compile=True)