mirror of
https://gitee.com/ascend/ModelLink.git
synced 2024-12-02 11:58:26 +08:00
51 lines
1.8 KiB
Python
51 lines
1.8 KiB
Python
import random
|
|
import unittest
|
|
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
from ascendspeed.model.glu_activations import GLU_ACTIVATIONS, geglu, liglu, reglu, swiglu
|
|
from ascendspeed.testing_utils import set_seed, torch_assert_equal
|
|
|
|
|
|
class TestActivations(unittest.TestCase):
|
|
def setUp(self):
|
|
"""setup an input of reasonable size"""
|
|
set_seed()
|
|
self.batch_size = random.randint(2, 64)
|
|
self.seq_len = random.randint(256, 1025)
|
|
self.num_channels = random.randint(1, 384) * 2
|
|
self.x = torch.randn(self.batch_size, self.seq_len, self.num_channels)
|
|
self.x1, self.x2 = self.x.chunk(2, dim=-1)
|
|
# glu should halve the last dimension
|
|
self.output_shape = [self.batch_size, self.seq_len, self.num_channels // 2]
|
|
|
|
def test_shapes(self):
|
|
for activation_fn in GLU_ACTIVATIONS.values():
|
|
output = activation_fn(self.x)
|
|
self.assertEqual(list(output.shape), self.output_shape)
|
|
|
|
def test_liglu(self):
|
|
expected = self.x1 * self.x2
|
|
torch_assert_equal(liglu(self.x), expected)
|
|
|
|
def test_geglu(self):
|
|
expected = self.x1 * F.gelu(self.x2)
|
|
torch_assert_equal(geglu(self.x), expected)
|
|
|
|
def test_reglu(self):
|
|
expected = self.x1 * F.relu(self.x2)
|
|
torch_assert_equal(reglu(self.x), expected)
|
|
|
|
def test_swiglu(self):
|
|
expected = self.x1 * F.silu(self.x2)
|
|
torch_assert_equal(swiglu(self.x), expected)
|
|
|
|
# from ascendspeed.testing_utils import require_torch_bf16
|
|
# @require_torch_bf16
|
|
# def test_bf16_jit(self):
|
|
# x_bf16 = self.x.to(torch.bfloat16)
|
|
# for activation_fn in GLU_ACTIVATIONS.values():
|
|
# output = activation_fn(x_bf16)
|
|
# self.assertEqual(list(output.shape), self.output_shape)
|