ModelLink2/tests/test_activations.py
2023-06-10 21:26:01 +08:00

51 lines
1.8 KiB
Python

import random
import unittest
import torch
from torch.nn import functional as F
from ascendspeed.model.glu_activations import GLU_ACTIVATIONS, geglu, liglu, reglu, swiglu
from ascendspeed.testing_utils import set_seed, torch_assert_equal
class TestActivations(unittest.TestCase):
def setUp(self):
"""setup an input of reasonable size"""
set_seed()
self.batch_size = random.randint(2, 64)
self.seq_len = random.randint(256, 1025)
self.num_channels = random.randint(1, 384) * 2
self.x = torch.randn(self.batch_size, self.seq_len, self.num_channels)
self.x1, self.x2 = self.x.chunk(2, dim=-1)
# glu should halve the last dimension
self.output_shape = [self.batch_size, self.seq_len, self.num_channels // 2]
def test_shapes(self):
for activation_fn in GLU_ACTIVATIONS.values():
output = activation_fn(self.x)
self.assertEqual(list(output.shape), self.output_shape)
def test_liglu(self):
expected = self.x1 * self.x2
torch_assert_equal(liglu(self.x), expected)
def test_geglu(self):
expected = self.x1 * F.gelu(self.x2)
torch_assert_equal(geglu(self.x), expected)
def test_reglu(self):
expected = self.x1 * F.relu(self.x2)
torch_assert_equal(reglu(self.x), expected)
def test_swiglu(self):
expected = self.x1 * F.silu(self.x2)
torch_assert_equal(swiglu(self.x), expected)
# from ascendspeed.testing_utils import require_torch_bf16
# @require_torch_bf16
# def test_bf16_jit(self):
# x_bf16 = self.x.to(torch.bfloat16)
# for activation_fn in GLU_ACTIVATIONS.values():
# output = activation_fn(x_bf16)
# self.assertEqual(list(output.shape), self.output_shape)