ModelLink2/tests/test_preprocessing.py
2023-06-10 21:26:01 +08:00

301 lines
12 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import filecmp
import io
import json
import re
import os
import unittest
import functools
from pathlib import Path
from ascendspeed.testing_utils import (
TestCasePlus,
execute_subprocess_async,
set_seed
)
from datasets import load_dataset
set_seed(42)
def write_jsonl(path, lines_num=1000, line_length=1024):
def get_text_line(line_length):
# XXX: fix to generate line_length
return "It's a wonderful world. I'm just walking on air. Talk of heaven on earth. I've got more than my share. Haven't got a care. Happy all day through. It's a wonderful world. Loving wonderful you!"
with io.open(path, "w", encoding="utf-8") as f:
for i in range(lines_num):
rec = dict(text=get_text_line(line_length))
x = json.dumps(rec, indent=0, ensure_ascii=False)
x = re.sub(r'\n', ' ', x, 0, re.M)
f.write(x + "\n")
@functools.lru_cache()
def download_hf_dataset(dsetname):
return load_dataset(dsetname)
class MegDSTestPreprocessing(TestCasePlus):
""" """
def setUp(self):
super().setUp()
def test_preprocess_data(self):
src_dir = self.src_dir
data_dir = f"{self.data_dir}/gpt2"
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False)
# autogenerate "input.jsonl"
input_path = f"{output_dir}/input.jsonl"
write_jsonl(input_path)
output_prefix =f"{output_dir}/test-ds"
cmd = f"""
python {src_dir}/tools/preprocess_data.py
--input {input_path}
--output-prefix {output_prefix}
--dataset-impl mmap
--tokenizer-type GPT2BPETokenizer
--merge-file {data_dir}/gpt2-tiny-merges.txt
--vocab {data_dir}/gpt2-tiny-vocab.json
--append-eod
--workers 2
""".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
for ext in ["bin", "idx"]:
tgt_path = f"{output_prefix}_text_document.{ext}"
self.assertTrue(Path(tgt_path).exists(), )
def compare_meg_data_files(self, tgt, ref):
for ext in ["bin", "idx"]:
tgt_path = f"{tgt}.{ext}"
ref_path = f"{ref}.{ext}"
self.assertTrue(Path(tgt_path).exists(), )
self.assertTrue(filecmp.cmp(tgt_path, ref_path, shallow=False))
def preprocess_partitioned_dataset(self, output_dir, dsetname, splitname, linelimit, numparts):
"""Preprocess a dataset as a whole and in shards to prepare environment for merge test.
Load specified HF dataset using given split and record limit.
Write the dataset to a jsonl file and preprocess.
Also split dataset into numparts contiguous shards, write each shard to its own jsonl, and preprocess each.
Return path to the full dataset and a list of paths for each shard."""
src_dir = self.src_dir
data_dir = f"{self.data_dir}/gpt2"
# preproces_data_dist requires one to have already downloaded the input HF dataset.
# We do that by running this script before the test.
dset = download_hf_dataset(dsetname)[splitname]
# limit the test to use the first linelimit entries to be faster
dset = dset.select(range(linelimit))
# write jsonl file of full dataset
json_ds = f"{output_dir}/ds-full.jsonl"
dset.to_json(json_ds)
# process full jsonl into indexed dataset file
ds_full = f"{output_dir}/ds-full"
cmd = f"""
python {src_dir}/tools/preprocess_data.py
--input {json_ds}
--output-prefix {ds_full}
--dataset-impl mmap
--tokenizer-type GPT2BPETokenizer
--merge-file {data_dir}/gpt2-tiny-merges.txt
--vocab {data_dir}/gpt2-tiny-vocab.json
--append-eod
""".split()
ds_full += '_text_document'
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
# write each part to its own json file
ds_parts = []
for i in range(numparts):
json_part = f"{output_dir}/ds-part-{i}.jsonl"
dset.shard(numparts, i, contiguous=True).to_json(json_part)
ds_part = f"{output_dir}/ds-part-{i}"
ds_parts.append(ds_part + '_text_document')
cmd = f"""
python {src_dir}/tools/preprocess_data.py
--input {json_part}
--output-prefix {ds_part}
--dataset-impl mmap
--tokenizer-type GPT2BPETokenizer
--merge-file {data_dir}/gpt2-tiny-merges.txt
--vocab {data_dir}/gpt2-tiny-vocab.json
--append-eod
""".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
return ds_full, ds_parts
def test_merge_serial(self):
"""Check that serial merge of partial dataset files produces the same file as the full dataset."""
src_dir = self.src_dir
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False)
# process full dataset, and process the full dataset as 3 contiguous chunks
ds_full, ds_parts = self.preprocess_partitioned_dataset(output_dir, 'stas/openwebtext-10k', 'train', 100, 3)
# merge the part files into a single indexed dataset
ds_merged = f"{output_dir}/ds-merged"
cmd = f"""
python {src_dir}/tools/merge_preprocessed_data.py
--datasets {" ".join(ds_parts)}
--output-prefix {ds_merged}
""".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
# the full dataset and the merged dataset should be identical
self.compare_meg_data_files(ds_full, ds_merged)
def test_merge_distributed(self):
"""Check that serial merge of partial dataset files produces the same file as the full dataset."""
src_dir = self.src_dir
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False)
# process full dataset, and process the full dataset as 3 contiguous chunks
ds_full, ds_parts = self.preprocess_partitioned_dataset(output_dir, 'stas/openwebtext-10k', 'train', 100, 3)
# merge the part files into a single indexed dataset
ds_merged = f"{output_dir}/ds-merged"
cmd = f"""
python -m torch.distributed.launch --nproc_per_node 6 {src_dir}/tools/merge_preprocessed_data.py
--merge distributed
--datasets {" ".join(ds_parts)}
--output-prefix {ds_merged}
--torch-backend gloo
""".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
# the full dataset and the merged dataset should be identical
self.compare_meg_data_files(ds_full, ds_merged)
def test_process_data_microsoft(self):
"""We want to be stable to Microsoft version."""
src_dir = self.src_dir
data_dir = f"{self.data_dir}/gpt2"
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False)
input_path = f"{self.tests_dir}/data/gpt2/openwebtext-1000.jsonl"
output_prefix = f"{output_dir}/test-ds-meg-gpt2-openwebtext"
cmd = f"""
python {src_dir}/tools/preprocess_data.py
--input {input_path}
--output-prefix {output_prefix}
--dataset-impl mmap
--tokenizer-type GPT2BPETokenizer
--merge-file {data_dir}/gpt2-tiny-merges.txt
--vocab {data_dir}/gpt2-tiny-vocab.json
--append-eod
--workers 2
""".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
self.compare_meg_data_files(f"{output_prefix}_text_document", f"{data_dir}/meg-gpt2-openwebtext_text_document")
def test_process_data_dist_microsoft(self):
"""We want to be stable to Microsoft version."""
src_dir = self.src_dir
data_dir = f"{self.data_dir}/gpt2"
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False)
output_prefix = f"{output_dir}/test-ds-meg-gpt2-openwebtext_1k"
# preprocess_data_dist requires one to have already downloaded the input HF dataset.
# We do that by running this script before the test.
dsetname = 'stas/openwebtext-10k'
download_hf_dataset(dsetname)
cmd = f"""
python -m torch.distributed.launch --nproc_per_node 2 {src_dir}/tools/preprocess_data_dist.py
--input {dsetname}
--count 1000
--output-prefix {output_prefix}
--dataset-impl mmap
--tokenizer-type GPT2BPETokenizer
--merge-file {data_dir}/gpt2-tiny-merges.txt
--vocab {data_dir}/gpt2-tiny-vocab.json
--append-eod
""".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
self.compare_meg_data_files(f"{output_prefix}_text_document", f"{data_dir}/meg-gpt2-openwebtext_text_document")
def test_process_data_dist_serial_microsoft(self):
"""We want to be stable to Microsoft version."""
src_dir = self.src_dir
data_dir = f"{self.data_dir}/gpt2"
output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False)
output_prefix = f"{output_dir}/test-ds-meg-gpt2-openwebtext_1k"
# preproces_data_dist requires one to have already downloaded the input HF dataset.
# We do that by running this script before the test.
dsetname = 'stas/openwebtext-10k'
download_hf_dataset(dsetname)
cmd = f"""
python -m torch.distributed.launch --nproc_per_node 2 {src_dir}/tools/preprocess_data_dist.py
--input {dsetname}
--count 1000
--merge serial
--output-prefix {output_prefix}
--dataset-impl mmap
--tokenizer-type GPT2BPETokenizer
--merge-file {data_dir}/gpt2-tiny-merges.txt
--vocab {data_dir}/gpt2-tiny-vocab.json
--append-eod
""".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
self.compare_meg_data_files(f"{output_prefix}_text_document", f"{data_dir}/meg-gpt2-openwebtext_text_document")