ModelLink2/ascendspeed/checkpointing.py
fengliangjun 7a21f0bf58 up
2023-09-26 14:30:47 +08:00

597 lines
24 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Input/output checkpointing."""
import os
import random
import sys
import numpy as np
from deepspeed.accelerator import get_accelerator
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from ascendspeed.enums import PositionEmbeddingType
from ascendspeed import (get_args,
is_rank_0,
mpu,
print_rank_0,
update_num_microbatches,
utils)
from ascendspeed.core import parallel_state
from ascendspeed.model import DistributedDataParallel as LocalDDP
from ascendspeed.model.lora_utils import is_enable_lora, get_lora_state_dict, lora_custom_load_fn_for_deepspeed, \
get_lora_model_classes, get_lora_state_dict_with_deepspeed, update_model_state_dict_with_megatron, \
get_lora_load_fn_with_deepspeed, handle_lora_modules_to_save_key_with_megatron
_CHECKPOINT_VERSION = None
def set_checkpoint_version(value):
global _CHECKPOINT_VERSION
if _CHECKPOINT_VERSION is not None:
assert _CHECKPOINT_VERSION == value, \
"checkpoint versions do not match"
_CHECKPOINT_VERSION = value
def get_checkpoint_version():
global _CHECKPOINT_VERSION
return _CHECKPOINT_VERSION
def check_checkpoint_args(checkpoint_args):
"""Ensure fixed arguments for a model are the same for the input
arguments and the one retrieved from checkpoint."""
args = get_args()
def _compare(arg_name, old_arg_name=None):
if old_arg_name is not None:
checkpoint_value = getattr(checkpoint_args, old_arg_name)
else:
checkpoint_value = getattr(checkpoint_args, arg_name)
args_value = getattr(args, arg_name)
error_message = '{} value from checkpoint ({}) is not equal to the ' \
'input argument value ({}).'.format(
arg_name, checkpoint_value, args_value)
assert checkpoint_value == args_value, error_message
if not args.mos and not args.kd:
_compare('num_layers')
_compare('hidden_size')
_compare('num_attention_heads')
_compare('position_embedding_type')
# with alibi we can change `max_position_embeddings`
if args.position_embedding_type != PositionEmbeddingType.alibi:
_compare('max_position_embeddings')
if args.vocab_file:
_compare('make_vocab_size_divisible_by')
_compare('padded_vocab_size')
_compare('tokenizer_type')
if get_checkpoint_version() < 3.0:
_compare('tensor_model_parallel_size',
old_arg_name='model_parallel_size')
if get_checkpoint_version() >= 3.0:
_compare('tensor_model_parallel_size')
_compare('pipeline_model_parallel_size')
def ensure_directory_exists(filename):
"""Build filename's path if it does not already exists."""
dirname = os.path.dirname(filename)
if not os.path.exists(dirname):
os.makedirs(dirname)
def get_checkpoint_name(checkpoints_path, iteration,
release=False, model_name='model_optim_rng.pt'):
"""A unified checkpoint name."""
if release:
directory = 'release'
else:
directory = 'iter_{:07d}'.format(iteration)
# Use both the tensor and pipeline MP rank.
if parallel_state.get_pipeline_model_parallel_world_size() == 1:
return os.path.join(checkpoints_path, directory,
'mp_rank_{:02d}'.format(
parallel_state.get_tensor_model_parallel_rank()),
model_name)
return os.path.join(checkpoints_path, directory,
'mp_rank_{:02d}_{:03d}'.format(
parallel_state.get_tensor_model_parallel_rank(),
parallel_state.get_pipeline_model_parallel_rank()),
model_name)
def get_checkpoint_tracker_filename(checkpoints_path):
"""Tracker file rescords the latest chckpoint during
training to restart from."""
return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')
def save_checkpoint(iteration, model, optimizer, lr_scheduler):
"""Save a model checkpoint."""
args = get_args()
# Only rank zero of the data parallel writes to the disk.
if not args.deepspeed:
unwrap_model_classes = (torchDDP, LocalDDP)
if is_enable_lora():
unwrap_model_classes += get_lora_model_classes()
model = utils.unwrap_model(model, unwrap_model_classes)
print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
iteration, args.save))
if not torch.distributed.is_initialized() or parallel_state.get_data_parallel_rank() == 0 \
or args.deepspeed:
# Arguments, iteration, and model.
state_dict = {}
state_dict['args'] = args
state_dict['checkpoint_version'] = 3.0
state_dict['iteration'] = iteration
state_dict['tokens'] = args.consumed_train_tokens
# DeepSpeed saves the model/optimizer/scheduler
if not args.deepspeed:
get_model_state_dict(model, state_dict)
# Optimizer stuff.
if not args.no_save_optim:
if optimizer is not None:
state_dict['optimizer'] = optimizer.state_dict()
if lr_scheduler is not None:
state_dict['lr_scheduler'] = lr_scheduler.state_dict()
# RNG states.
if not args.no_save_rng:
state_dict['random_rng_state'] = random.getstate()
state_dict['np_rng_state'] = np.random.get_state()
state_dict['torch_rng_state'] = torch.get_rng_state()
state_dict['cuda_rng_state'] = get_accelerator().get_rng_state()
state_dict['rng_tracker_states'] \
= mpu.get_cuda_rng_tracker().get_states()
# Save.
checkpoint_name = get_checkpoint_name(args.save, iteration)
if not args.deepspeed:
ensure_directory_exists(checkpoint_name)
torch.save(state_dict, checkpoint_name)
if args.deepspeed:
#ascendspeed model uses state_dict_for_save_checkpointing instead of the standard state_dict
#state_dict is used by deepspeed for module saving so it needs to point to the right function
if args.no_pipeline_parallel:
original_state_dict = model[0].module.state_dict
model[0].module.state_dict = model[0].module.state_dict_for_save_checkpoint
if is_enable_lora():
model[0].module.state_dict = get_lora_state_dict_with_deepspeed(model=model[0])
# Saving is a collective communication
checkpoint_name = get_checkpoint_name(args.save, iteration)
# Trim off the filename and mp_rank_* directory.
for _ in range(3):
checkpoint_name = os.path.dirname(checkpoint_name)
model[0].save_checkpoint(checkpoint_name, client_state=state_dict)
if args.no_pipeline_parallel:
model[0].module.state_dict = original_state_dict
save_checkpoint_post_process(iteration)
def get_model_state_dict(model, state_dict):
if len(model) == 1:
state_dict['model'] = model[0].state_dict_for_save_checkpoint()
if is_enable_lora():
state_dict['model'] = get_lora_state_dict(state_dict['model'])
else:
for i in range(len(model)):
parallel_state.set_virtual_pipeline_model_parallel_rank(i)
state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
if is_enable_lora():
state_dict['model%d' % i] = get_lora_state_dict(state_dict['model%d' % i])
def save_checkpoint_post_process(iteration):
args = get_args()
# Wait so everyone is done (necessary)
if torch.distributed.is_initialized():
torch.distributed.barrier()
print_rank_0(' successfully saved checkpoint at iteration {:7d} to {}'.format(
iteration, args.save))
# And update the latest iteration
if is_rank_0():
tracker_filename = get_checkpoint_tracker_filename(args.save)
with open(tracker_filename, 'w') as f:
f.write(str(iteration))
# Wait so everyone is done (not necessary)
if torch.distributed.is_initialized():
torch.distributed.barrier()
def _transpose_first_dim(t, num_splits, num_splits_first, model):
input_shape = t.size()
# We use a self_attention module but the values extracted aren't
# specific to self attention so should work for cross attention as well
while hasattr(model, 'module'):
model = model.module
#attention_module = model.language_model.encoder.layers[0].self_attention
attention_module = model.language_model.encoder.layers[0].attention
hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
if num_splits_first:
"""[num_splits * np * hn, h]
-->(view) [num_splits, np, hn, h]
-->(tranpose) [np, num_splits, hn, h]
-->(view) [np * num_splits * hn, h] """
intermediate_shape = \
(num_splits, num_attention_heads_per_partition,
hidden_size_per_attention_head) + input_shape[1:]
t = t.view(*intermediate_shape)
t = t.transpose(0, 1).contiguous()
else:
"""[np * hn * num_splits, h]
-->(view) [np, hn, num_splits, h]
-->(tranpose) [np, num_splits, hn, h]
-->(view) [np * num_splits * hn, h] """
intermediate_shape = \
(num_attention_heads_per_partition,
hidden_size_per_attention_head, num_splits) +\
input_shape[1:]
t = t.view(*intermediate_shape)
t = t.transpose(1, 2).contiguous()
t = t.view(*input_shape)
return t
def fix_query_key_value_ordering(model, checkpoint_version):
"""Fix up query/key/value matrix ordering if checkpoint
version is smaller than 2.0
"""
if checkpoint_version < 2.0:
if isinstance(model, list):
assert len(model)==1
model = model[0]
for name, param in model.named_parameters():
if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
if checkpoint_version == 0:
fixed_param = _transpose_first_dim(param.data, 3, True, model)
elif checkpoint_version == 1.0:
fixed_param = _transpose_first_dim(param.data, 3, False, model)
else:
print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
sys.exit()
param.data.copy_(fixed_param)
if name.endswith(('.key_value.weight', '.key_value.bias')):
if checkpoint_version == 0:
fixed_param = _transpose_first_dim(param.data, 2, True, model)
elif checkpoint_version == 1.0:
fixed_param = _transpose_first_dim(param.data, 2, False, model)
else:
print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
sys.exit()
param.data.copy_(fixed_param)
print_rank_0(" succesfully fixed query-key-values ordering for"
" checkpoint version {}".format(checkpoint_version))
def read_tracker(load_dir):
args = get_args()
iteration = 0
release = False
# Read the tracker file and set the iteration.
tracker_filename = get_checkpoint_tracker_filename(load_dir)
# If no tracker file, return iteration zero.
if not os.path.isfile(tracker_filename):
print_rank_0('WARNING: could not find the metadata file {} '.format(
tracker_filename))
print_rank_0(' will not load any checkpoints and will start from '
'random')
return False, iteration, release
# Otherwise, read the tracker file and either set the iteration or
# mark it as a release checkpoint.
with open(tracker_filename, 'r') as f:
metastring = f.read().strip()
try:
iteration = int(metastring)
except ValueError:
release = metastring == 'release'
if not release:
print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
tracker_filename))
sys.exit()
if not args.mos and not args.kd:
assert iteration > 0 or release, 'error parsing metadata file {}'.format(
tracker_filename)
return True, iteration, release
def get_state_dict_and_release(load_dir, lora_load_dir=None):
args = get_args()
read_tracker_success, iteration, release = read_tracker(load_dir)
if not read_tracker_success:
raise ValueError(f"{load_dir} do not have tracker.")
if lora_load_dir:
read_tracker_success, lora_iteration, lora_release = read_tracker(lora_load_dir)
if not read_tracker_success:
raise ValueError(f"{lora_load_dir} do not have tracker.")
# Checkpoint.
checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')
model_checkpoint_name = None
if lora_load_dir: # 有lora目录时其他参数都应从lora目录读取load目录只提供原始模型权重
model_checkpoint_name = checkpoint_name
checkpoint_name = get_checkpoint_name(lora_load_dir, lora_iteration, lora_release)
print_rank_0(
f' loading lora checkpoint from {args.lora_load} at iteration {lora_iteration} release:{lora_release}')
release = lora_release
# Load the checkpoint.
try:
state_dict = load_state_dict_from_checkpoint_with_megatron(checkpoint_name,
model_checkpoint_name=model_checkpoint_name)
except ModuleNotFoundError:
from ascendspeed.fp16_deprecated import loss_scaler
# For backward compatibility.
print_rank_0(' > deserializing using the old code structure ...')
sys.modules['fp16.loss_scaler'] = sys.modules[
'ascendspeed.fp16_deprecated.loss_scaler']
sys.modules['ascendspeed.fp16.loss_scaler'] = sys.modules[
'ascendspeed.fp16_deprecated.loss_scaler']
state_dict = load_state_dict_from_checkpoint_with_megatron(checkpoint_name,
model_checkpoint_name=model_checkpoint_name)
sys.modules.pop('fp16.loss_scaler', None)
sys.modules.pop('ascendspeed.fp16.loss_scaler', None)
except BaseException as e:
print_rank_0('could not load the checkpoint')
print_rank_0(e)
sys.exit()
return state_dict, release, checkpoint_name
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True, load_only_weights=False):
"""Load a model checkpoint and return the iteration.
strict (bool): whether to strictly enforce that the keys in
:attr:`state_dict` of the checkpoint match the names of
parameters and buffers in model.
"""
args = get_args()
load_dir = getattr(args, load_arg)
lora_load_dir = getattr(args, 'lora_load')
if args.deepspeed:
if not os.path.exists(load_dir):
print_rank_0(f"WARNING: could not find the metadata file {load_dir}")
print_rank_0(f" will not load any checkpoints and will start from random")
return 0
custom_load_fn, load_dir = get_custom_load_fn(model=model[0], load_dir=load_dir, lora_load_dir=lora_load_dir)
load_zero_optim = sum(['zero' in file for file in os.listdir(load_dir)]) > 0
release = not load_zero_optim
loaded_dir, state_dict = model[0].load_checkpoint(
load_dir,
load_module_strict=strict,
load_module_only=not load_zero_optim,
load_optimizer_states=load_zero_optim,
load_lr_scheduler_states=load_zero_optim,
custom_load_fn=custom_load_fn
)
if loaded_dir is None:
print_rank_0(f"WARNING: could not find the metadata file {load_dir}")
print_rank_0(f" will not load any checkpoints and will start from random")
return 0
checkpoint_name = loaded_dir # 开启lora时主要参数会从lora_load里读取所以最后打印时用checkpoint_name传递
else:
unwrap_model_classes = (torchDDP, LocalDDP)
if is_enable_lora():
unwrap_model_classes += get_lora_model_classes()
model = utils.unwrap_model(model, unwrap_model_classes)
try:
state_dict, release, checkpoint_name = get_state_dict_and_release(load_dir=load_dir,
lora_load_dir=lora_load_dir)
except ValueError as e:
print_rank_0(f"{e}")
return 0
# set checkpoint version
set_checkpoint_version(state_dict.get('checkpoint_version', 0))
# Set iteration.
if args.finetune or release or args.reset_iteration or load_only_weights:
iteration = 0
# Make DeepSpeed engine aware of this reset of iteration
model[0].global_steps = 0
else:
iteration = load_iteration_from_state_dict(state_dict, checkpoint_name)
# Check arguments.
reset_train_valid_samples = args.reset_iteration
if not load_only_weights and not reset_train_valid_samples:
assert args.consumed_train_samples == 0
assert args.consumed_valid_samples == 0
if 'args' in state_dict:
checkpoint_args = state_dict['args']
check_checkpoint_args(checkpoint_args)
args.consumed_train_samples = getattr(checkpoint_args,
'consumed_train_samples', 0)
update_num_microbatches(consumed_samples=args.consumed_train_samples)
args.consumed_valid_samples = getattr(checkpoint_args,
'consumed_valid_samples', 0)
else:
print_rank_0('could not find arguments in the checkpoint ...')
# Model.
if not args.deepspeed:
if is_enable_lora() and iteration == 0:
strict = False
if len(model) == 1:
result = model[0].load_state_dict(state_dict['model'], strict=strict)
if not strict and result:
print_rank_0(f"load checkpoint result:{result}")
else:
for i in range(len(model)):
parallel_state.set_virtual_pipeline_model_parallel_rank(i)
model[i].load_state_dict(state_dict['model%d' % i], strict=strict)
# Fix up query/key/value matrix ordering if needed
checkpoint_version = get_checkpoint_version()
print_rank_0(f' checkpoint version {checkpoint_version}')
fix_query_key_value_ordering(model, checkpoint_version)
# Optimizer.
if not args.deepspeed:
if not release and not args.finetune and not args.no_load_optim:
load_optimizer_from_state_dict(optimizer, lr_scheduler, state_dict, checkpoint_name)
# rng states.
if not release and not args.finetune and not args.no_load_rng:
try:
random.setstate(state_dict['random_rng_state'])
np.random.set_state(state_dict['np_rng_state'])
torch.set_rng_state(state_dict['torch_rng_state'])
get_accelerator().set_rng_state(state_dict['cuda_rng_state'])
# Check for empty states array
if not state_dict['rng_tracker_states']:
raise KeyError
mpu.get_cuda_rng_tracker().set_states(
state_dict['rng_tracker_states'])
except KeyError:
print_rank_0('Unable to load rng state from checkpoint {}. '
'Specify --no-load-rng or --finetune to prevent '
'attempting to load the rng state, '
'exiting ...'.format(checkpoint_name))
sys.exit()
# Some utilities want to load a checkpoint without distributed being initialized
if torch.distributed.is_initialized():
torch.distributed.barrier()
print_rank_0(f' successfully loaded checkpoint from {checkpoint_name} at iteration {iteration}')
return iteration
def get_custom_load_fn(model, load_dir, lora_load_dir=None):
custom_load_fn = None
if is_enable_lora():
if lora_load_dir:
custom_load_fn = get_lora_load_fn_with_deepspeed(model=model, base_model_load_dir=load_dir)
load_dir = lora_load_dir
else:
custom_load_fn = lora_custom_load_fn_for_deepspeed
return custom_load_fn, load_dir
def load_optimizer_from_state_dict(optimizer, lr_scheduler, state_dict, checkpoint_name):
args = get_args()
try:
if optimizer is not None:
optimizer.load_state_dict(state_dict['optimizer'])
if lr_scheduler is not None and not args.no_load_lr_state:
lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
except KeyError:
print_rank_0('Unable to load optimizer from checkpoint {}. '
'Specify --no-load-optim or --finetune to prevent '
'attempting to load the optimizer state, '
'exiting ...'.format(checkpoint_name))
sys.exit()
def load_iteration_from_state_dict(state_dict, checkpoint_name):
args = get_args()
try:
iteration = state_dict['iteration']
if 'tokens' in state_dict:
args.consumed_train_tokens = state_dict['tokens']
except KeyError:
try: # Backward compatible with older checkpoints
iteration = state_dict['total_iters']
except KeyError:
print_rank_0('A metadata file exists but unable to load '
'iteration from checkpoint {}, exiting'.format(
checkpoint_name))
sys.exit()
return iteration
def load_state_dict_from_checkpoint_with_megatron(checkpoint_name, model_checkpoint_name=None):
state_dict = torch.load(checkpoint_name, map_location='cpu')
if model_checkpoint_name:
model_state_dict = torch.load(model_checkpoint_name, map_location='cpu')
state_dict = update_model_state_dict_with_megatron(model_state_dict=model_state_dict,
state_dict=state_dict)
state_dict = handle_lora_modules_to_save_key_with_megatron(state_dict)
return state_dict
def load_biencoder_checkpoint(model, only_query_model=False,
only_context_model=False, custom_load_path=None):
"""
selectively load retrieval models for indexing/retrieving
from saved checkpoints
"""
args = get_args()
model = utils.unwrap_model(model)
load_path = custom_load_path if custom_load_path is not None else args.load
tracker_filename = get_checkpoint_tracker_filename(load_path)
with open(tracker_filename, 'r') as f:
iteration = int(f.read().strip())
checkpoint_name = get_checkpoint_name(load_path, iteration, False)
if parallel_state.get_data_parallel_rank() == 0:
print('global rank {} is loading checkpoint {}'.format(
torch.distributed.get_rank(), checkpoint_name))
state_dict = torch.load(checkpoint_name, map_location='cpu')
ret_state_dict = state_dict['model']
if only_query_model:
ret_state_dict.pop('context_model')
if only_context_model:
ret_state_dict.pop('query_model')
assert len(model) == 1
model[0].load_state_dict(ret_state_dict)
torch.distributed.barrier()
if parallel_state.get_data_parallel_rank() == 0:
print(' successfully loaded {}'.format(checkpoint_name))
return model