mirror of
https://gitee.com/ascend/ModelLink.git
synced 2024-12-02 03:48:24 +08:00
185 lines
5.9 KiB
Python
185 lines
5.9 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""global variables."""
|
|
|
|
import os
|
|
import sys
|
|
|
|
import torch
|
|
|
|
from ascendspeed.tokenizer import build_tokenizer
|
|
from .arguments import parse_args
|
|
from .microbatches import build_num_microbatches_calculator
|
|
from deepspeed.accelerator import get_accelerator
|
|
from .timers import Timers
|
|
|
|
_GLOBAL_ARGS = None
|
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
|
|
_GLOBAL_TOKENIZER = None
|
|
_GLOBAL_TENSORBOARD_WRITER = None
|
|
_GLOBAL_ADLR_AUTORESUME = None
|
|
_GLOBAL_TIMERS = None
|
|
|
|
|
|
def get_args():
|
|
"""Return arguments."""
|
|
_ensure_var_is_initialized(_GLOBAL_ARGS, 'args')
|
|
return _GLOBAL_ARGS
|
|
|
|
|
|
def get_num_microbatches():
|
|
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get()
|
|
|
|
|
|
def get_current_global_batch_size():
|
|
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size()
|
|
|
|
|
|
def update_num_microbatches(consumed_samples, consistency_check=True):
|
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples,
|
|
consistency_check)
|
|
|
|
|
|
def get_tokenizer():
|
|
"""Return tokenizer."""
|
|
_ensure_var_is_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
|
|
return _GLOBAL_TOKENIZER
|
|
|
|
|
|
def get_tensorboard_writer():
|
|
"""Return tensorboard writer. It can be None so no need
|
|
to check if it is initialized."""
|
|
return _GLOBAL_TENSORBOARD_WRITER
|
|
|
|
|
|
def get_adlr_autoresume():
|
|
"""ADLR autoresume object. It can be None so no need
|
|
to check if it is initialized."""
|
|
return _GLOBAL_ADLR_AUTORESUME
|
|
|
|
|
|
def get_timers():
|
|
"""Return timers."""
|
|
_ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers')
|
|
return _GLOBAL_TIMERS
|
|
|
|
|
|
def set_global_variables(extra_args_provider=None, args_defaults={},
|
|
ignore_unknown_args=False):
|
|
"""Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers."""
|
|
args = _parse_args(extra_args_provider=extra_args_provider,
|
|
defaults=args_defaults,
|
|
ignore_unknown_args=ignore_unknown_args)
|
|
_build_num_microbatches_calculator(args)
|
|
if args.vocab_file or args.tokenizer_name_or_path:
|
|
_ = _build_tokenizer(args)
|
|
_set_tensorboard_writer(args)
|
|
_set_adlr_autoresume(args)
|
|
_set_timers(args)
|
|
|
|
|
|
def _parse_args(extra_args_provider=None, defaults={},
|
|
ignore_unknown_args=False):
|
|
"""Parse entire arguments."""
|
|
global _GLOBAL_ARGS
|
|
_ensure_var_is_not_initialized(_GLOBAL_ARGS, 'args')
|
|
_GLOBAL_ARGS = parse_args(extra_args_provider=extra_args_provider,
|
|
defaults=defaults,
|
|
ignore_unknown_args=ignore_unknown_args)
|
|
return _GLOBAL_ARGS
|
|
|
|
|
|
def _build_num_microbatches_calculator(args):
|
|
|
|
global _GLOBAL_NUM_MICROBATCHES_CALCULATOR
|
|
_ensure_var_is_not_initialized(_GLOBAL_NUM_MICROBATCHES_CALCULATOR,
|
|
'num microbatches calculator')
|
|
|
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = build_num_microbatches_calculator(
|
|
args)
|
|
|
|
|
|
def _build_tokenizer(args):
|
|
"""Initialize tokenizer."""
|
|
global _GLOBAL_TOKENIZER
|
|
_ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
|
|
_GLOBAL_TOKENIZER = build_tokenizer(args)
|
|
return _GLOBAL_TOKENIZER
|
|
|
|
|
|
def rebuild_tokenizer(args, tokenizer=None):
|
|
global _GLOBAL_TOKENIZER
|
|
_GLOBAL_TOKENIZER = None
|
|
if tokenizer is None:
|
|
return _build_tokenizer(args)
|
|
else:
|
|
_GLOBAL_TOKENIZER = tokenizer
|
|
return _GLOBAL_TOKENIZER
|
|
|
|
|
|
def _set_tensorboard_writer(args):
|
|
"""Set tensorboard writer."""
|
|
global _GLOBAL_TENSORBOARD_WRITER
|
|
_ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER,
|
|
'tensorboard writer')
|
|
|
|
if hasattr(args, 'tensorboard_dir') and \
|
|
args.tensorboard_dir and args.rank == (args.world_size - 1):
|
|
try:
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
print('> setting tensorboard ...')
|
|
_GLOBAL_TENSORBOARD_WRITER = SummaryWriter(
|
|
log_dir=args.tensorboard_dir,
|
|
max_queue=args.tensorboard_queue_size)
|
|
except ModuleNotFoundError:
|
|
print('WARNING: TensorBoard writing requested but is not '
|
|
'available (are you using PyTorch 1.1.0 or later?), '
|
|
'no TensorBoard logs will be written.', flush=True)
|
|
|
|
|
|
def _set_adlr_autoresume(args):
|
|
"""Initialize ADLR autoresume."""
|
|
global _GLOBAL_ADLR_AUTORESUME
|
|
_ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, 'adlr autoresume')
|
|
|
|
if args.adlr_autoresume:
|
|
if args.rank == 0:
|
|
print('enabling autoresume ...', flush=True)
|
|
sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.'))
|
|
try:
|
|
from userlib.auto_resume import AutoResume
|
|
except BaseException:
|
|
print('ADLR autoresume is not available, exiting ...')
|
|
sys.exit()
|
|
|
|
_GLOBAL_ADLR_AUTORESUME = AutoResume
|
|
|
|
|
|
def _set_timers(args):
|
|
"""Initialize timers."""
|
|
global _GLOBAL_TIMERS
|
|
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
|
|
_GLOBAL_TIMERS = Timers(args.timing_log_level, args.timing_log_option)
|
|
|
|
|
|
def _ensure_var_is_initialized(var, name):
|
|
"""Make sure the input variable is not None."""
|
|
assert var is not None, '{} is not initialized.'.format(name)
|
|
|
|
|
|
def _ensure_var_is_not_initialized(var, name):
|
|
"""Make sure the input variable is not None."""
|
|
assert var is None, '{} is already initialized.'.format(name) |