mirror of
https://gitee.com/ascend/ModelLink.git
synced 2024-12-02 03:48:24 +08:00
146 lines
5.0 KiB
Python
146 lines
5.0 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import torch
|
|
from deepspeed.accelerator import get_accelerator
|
|
|
|
# A dictionary of all the memory buffers allocated.
|
|
_MEM_BUFFS = dict()
|
|
|
|
|
|
def allocate_mem_buff(name, numel, dtype, track_usage):
|
|
"""Allocate a memory buffer."""
|
|
assert name not in _MEM_BUFFS, \
|
|
'memory buffer {} already allocated.'.format(name)
|
|
_MEM_BUFFS[name] = MemoryBuffer(name, numel, dtype, track_usage)
|
|
return _MEM_BUFFS[name]
|
|
|
|
|
|
def get_mem_buff(name):
|
|
"""Get the memory buffer."""
|
|
return _MEM_BUFFS[name]
|
|
|
|
|
|
class MemoryBuffer:
|
|
"""Contiguous memory buffer.
|
|
Allocate a contiguous memory of type `dtype` and size `numel`. It is
|
|
used to reduce memory fragmentation.
|
|
|
|
Usage: After the allocation, the `_start` index is set tot the first
|
|
index of the memory. A memory chunk starting from `_start` index
|
|
can be `allocated` for an input tensor, with the elements of the
|
|
tensor being coppied. The buffer can be reused by resetting the
|
|
`_start` index.
|
|
|
|
"""
|
|
def __init__(self, name, numel, dtype, track_usage):
|
|
if torch.distributed.get_rank() == 0:
|
|
element_size = torch.tensor([], dtype=dtype).element_size()
|
|
print('> building the {} memory buffer with {} num elements '
|
|
'and {} dtype ({:.1f} MB)...'.format(
|
|
name, numel, dtype, numel*element_size/1024/1024),
|
|
flush=True)
|
|
self.name = name
|
|
self.numel = numel
|
|
self.dtype = dtype
|
|
self.data = torch.empty(self.numel,
|
|
dtype=self.dtype,
|
|
device=get_accelerator().current_device_name(),
|
|
requires_grad=False)
|
|
|
|
# Index tracking the start of the free memory.
|
|
self._start = 0
|
|
|
|
# Values used for tracking usage.
|
|
self.track_usage = track_usage
|
|
if self.track_usage:
|
|
self.in_use_value = 0.0
|
|
self.total_value = 0.0
|
|
|
|
|
|
def reset(self):
|
|
"""Reset the buffer start index to the beginning of the buffer."""
|
|
self._start = 0
|
|
|
|
|
|
def is_in_use(self):
|
|
"""Whether the current buffer hold on to any memory."""
|
|
return self._start > 0
|
|
|
|
|
|
def numel_in_use(self):
|
|
"""Return number of elements in use."""
|
|
return self._start
|
|
|
|
|
|
def add(self, tensor):
|
|
"""Allocate a chunk of memory from the buffer to tensor and copy
|
|
the values."""
|
|
assert tensor.dtype == self.dtype, \
|
|
'Input tensor type {} different from buffer type {}'.format(
|
|
tensor.dtype, self.dtype)
|
|
# Number of elements of the input tensor.
|
|
tensor_numel = torch.numel(tensor)
|
|
new_start = self._start + tensor_numel
|
|
assert new_start <= self.numel, \
|
|
'Not enough memory left in the buffer ({} > {})'.format(
|
|
tensor_numel, self.numel - self._start)
|
|
# New tensor is a view into the memory.
|
|
new_tensor = self.data[self._start:new_start]
|
|
self._start = new_start
|
|
new_tensor = new_tensor.view(tensor.shape)
|
|
new_tensor.copy_(tensor)
|
|
# Return a pointer to the new tensor.
|
|
return new_tensor
|
|
|
|
|
|
def get_data(self):
|
|
"""Return the data currently in use."""
|
|
if self.track_usage:
|
|
self.in_use_value += float(self._start)
|
|
self.total_value += float(self.numel)
|
|
return self.data[:self._start]
|
|
|
|
|
|
def print_average_usage(self):
|
|
"""Print memory usage average over time. We would like this value
|
|
to be as high as possible."""
|
|
assert self.track_usage, 'You need to enable track usage.'
|
|
if torch.distributed.get_rank() == 0:
|
|
print(' > usage of {} memory buffer: {:.2f} %'.format(
|
|
self.name, self.in_use_value * 100.0 / self.total_value),
|
|
flush=True)
|
|
|
|
|
|
|
|
class RingMemBuffer:
|
|
"""A ring of memory buffers."""
|
|
|
|
def __init__(self, name, num_buffers, numel, dtype, track_usage):
|
|
self.num_buffers = num_buffers
|
|
self.buffers = [
|
|
allocate_mem_buff(name+' {}'.format(i), numel, dtype, track_usage)
|
|
for i in range(num_buffers)]
|
|
self._index = -1
|
|
|
|
|
|
def get_next_buffer(self):
|
|
self._index += 1
|
|
self._index = self._index % self.num_buffers
|
|
buff = self.buffers[self._index]
|
|
assert not buff.is_in_use(), 'buffer is already in use.'
|
|
return buff
|