Rainbond/vendor/github.com/thejerf/suture/suture_test.go
2017-11-07 11:40:44 +08:00

656 lines
14 KiB
Go

package suture
import (
"errors"
"fmt"
"reflect"
"sync"
"testing"
"time"
)
const (
Happy = iota
Fail
Panic
Hang
UseStopChan
)
var everMultistarted = false
// Test that supervisors work perfectly when everything is hunky dory.
func TestTheHappyCase(t *testing.T) {
t.Parallel()
s := NewSimple("A")
if s.String() != "A" {
t.Fatal("Can't get name from a supervisor")
}
service := NewService("B")
s.Add(service)
go s.Serve()
<-service.started
// If we stop the service, it just gets restarted
service.Stop()
<-service.started
// And it is shut down when we stop the supervisor
service.take <- UseStopChan
s.Stop()
<-service.stop
}
// Test that adding to a running supervisor does indeed start the service.
func TestAddingToRunningSupervisor(t *testing.T) {
t.Parallel()
s := NewSimple("A1")
s.ServeBackground()
defer s.Stop()
service := NewService("B1")
s.Add(service)
<-service.started
services := s.Services()
if !reflect.DeepEqual([]Service{service}, services) {
t.Fatal("Can't get list of services as expected.")
}
}
// Test what happens when services fail.
func TestFailures(t *testing.T) {
t.Parallel()
s := NewSimple("A2")
s.failureThreshold = 3.5
go s.Serve()
defer func() {
// to avoid deadlocks during shutdown, we have to not try to send
// things out on channels while we're shutting down (this undoes the
// logFailure overide about 25 lines down)
s.logFailure = func(*Supervisor, Service, string, float64, float64, bool, interface{}, []byte) {}
s.Stop()
}()
s.sync()
service1 := NewService("B2")
service2 := NewService("C2")
s.Add(service1)
<-service1.started
s.Add(service2)
<-service2.started
nowFeeder := NewNowFeeder()
pastVal := time.Unix(1000000, 0)
nowFeeder.appendTimes(pastVal)
s.getNow = nowFeeder.getter
resumeChan := make(chan time.Time)
s.getAfterChan = func(d time.Duration) <-chan time.Time {
return resumeChan
}
failNotify := make(chan bool)
// use this to synchronize on here
s.logFailure = func(supervisor *Supervisor, s Service, sn string, cf float64, ft float64, r bool, error interface{}, stacktrace []byte) {
failNotify <- r
}
// All that setup was for this: Service1, please return now.
service1.take <- Fail
restarted := <-failNotify
<-service1.started
if !restarted || s.failures != 1 || s.lastFail != pastVal {
t.Fatal("Did not fail in the expected manner")
}
// Getting past this means the service was restarted.
service1.take <- Happy
// Service2, your turn.
service2.take <- Fail
nowFeeder.appendTimes(pastVal)
restarted = <-failNotify
<-service2.started
if !restarted || s.failures != 2 || s.lastFail != pastVal {
t.Fatal("Did not fail in the expected manner")
}
// And you're back. (That is, the correct service was restarted.)
service2.take <- Happy
// Now, one failureDecay later, is everything working correctly?
oneDecayLater := time.Unix(1000030, 0)
nowFeeder.appendTimes(oneDecayLater)
service2.take <- Fail
restarted = <-failNotify
<-service2.started
// playing a bit fast and loose here with floating point, but...
// we get 2 by taking the current failure value of 2, decaying it
// by one interval, which cuts it in half to 1, then adding 1 again,
// all of which "should" be precise
if !restarted || s.failures != 2 || s.lastFail != oneDecayLater {
t.Fatal("Did not decay properly", s.lastFail, oneDecayLater)
}
// For a change of pace, service1 would you be so kind as to panic?
nowFeeder.appendTimes(oneDecayLater)
service1.take <- Panic
restarted = <-failNotify
<-service1.started
if !restarted || s.failures != 3 || s.lastFail != oneDecayLater {
t.Fatal("Did not correctly recover from a panic")
}
nowFeeder.appendTimes(oneDecayLater)
backingoff := make(chan bool)
s.logBackoff = func(s *Supervisor, backingOff bool) {
backingoff <- backingOff
}
// And with this failure, we trigger the backoff code.
service1.take <- Fail
backoff := <-backingoff
restarted = <-failNotify
if !backoff || restarted || s.failures != 4 {
t.Fatal("Broke past the threshold but did not log correctly", s.failures)
}
if service1.existing != 0 {
t.Fatal("service1 still exists according to itself?")
}
// service2 is still running, because we don't shut anything down in a
// backoff, we just stop restarting.
service2.take <- Happy
var correct bool
timer := time.NewTimer(time.Millisecond * 10)
// verify the service has not been restarted
// hard to get around race conditions here without simply using a timer...
select {
case service1.take <- Happy:
correct = false
case <-timer.C:
correct = true
}
if !correct {
t.Fatal("Restarted the service during the backoff interval")
}
// tell the supervisor the restart interval has passed
resumeChan <- time.Time{}
backoff = <-backingoff
<-service1.started
s.sync()
if s.failures != 0 {
t.Fatal("Did not reset failure count after coming back from timeout.")
}
nowFeeder.appendTimes(oneDecayLater)
service1.take <- Fail
restarted = <-failNotify
<-service1.started
if !restarted || backoff {
t.Fatal("For some reason, got that we were backing off again.", restarted, backoff)
}
}
func TestRunningAlreadyRunning(t *testing.T) {
t.Parallel()
s := NewSimple("A3")
go s.Serve()
defer s.Stop()
// ensure the supervisor has made it to its main loop
s.sync()
var errored bool
func() {
defer func() {
if r := recover(); r != nil {
errored = true
}
}()
s.Serve()
}()
if !errored {
t.Fatal("Supervisor failed to prevent itself from double-running.")
}
}
func TestFullConstruction(t *testing.T) {
t.Parallel()
s := New("Moo", Spec{
Log: func(string) {},
FailureDecay: 1,
FailureThreshold: 2,
FailureBackoff: 3,
Timeout: time.Second * 29,
})
if s.String() != "Moo" || s.failureDecay != 1 || s.failureThreshold != 2 || s.failureBackoff != 3 || s.timeout != time.Second*29 {
t.Fatal("Full construction failed somehow")
}
}
// This is mostly for coverage testing.
func TestDefaultLogging(t *testing.T) {
t.Parallel()
s := NewSimple("A4")
service := NewService("B4")
s.Add(service)
s.failureThreshold = .5
s.failureBackoff = time.Millisecond * 25
go s.Serve()
s.sync()
<-service.started
resumeChan := make(chan time.Time)
s.getAfterChan = func(d time.Duration) <-chan time.Time {
return resumeChan
}
service.take <- UseStopChan
service.take <- Fail
<-service.stop
resumeChan <- time.Time{}
<-service.started
service.take <- Happy
name := serviceName(&BarelyService{})
s.logBadStop(s, service, name)
s.logFailure(s, service, name, 1, 1, true, errors.New("test error"), []byte{})
s.Stop()
}
func TestNestedSupervisors(t *testing.T) {
t.Parallel()
super1 := NewSimple("Top5")
super2 := NewSimple("Nested5")
service := NewService("Service5")
super2.logBadStop = func(*Supervisor, Service, string) {
panic("Failed to copy logBadStop")
}
super1.Add(super2)
super2.Add(service)
// test the functions got copied from super1; if this panics, it didn't
// get copied
super2.logBadStop(super2, service, "Service5")
go super1.Serve()
super1.sync()
<-service.started
service.take <- Happy
super1.Stop()
}
func TestStoppingSupervisorStopsServices(t *testing.T) {
t.Parallel()
s := NewSimple("Top6")
service := NewService("Service 6")
s.Add(service)
go s.Serve()
s.sync()
<-service.started
service.take <- UseStopChan
s.Stop()
<-service.stop
if s.sendControl(syncSupervisor{}) {
t.Fatal("supervisor is shut down, should be returning fals for sendControl")
}
if s.Services() != nil {
t.Fatal("Non-running supervisor is returning services list")
}
}
// This tests that even if a service is hung, the supervisor will stop.
func TestStoppingStillWorksWithHungServices(t *testing.T) {
t.Parallel()
s := NewSimple("Top7")
service := NewService("Service WillHang7")
s.Add(service)
go s.Serve()
<-service.started
service.take <- UseStopChan
service.take <- Hang
resumeChan := make(chan time.Time)
s.getAfterChan = func(d time.Duration) <-chan time.Time {
return resumeChan
}
failNotify := make(chan struct{})
s.logBadStop = func(supervisor *Supervisor, s Service, name string) {
failNotify <- struct{}{}
}
// stop the supervisor, then immediately call time on it
go s.Stop()
resumeChan <- time.Time{}
<-failNotify
service.release <- true
<-service.stop
}
// This tests that even if a service is hung, the supervisor can still
// remove it.
func TestRemovingHungService(t *testing.T) {
t.Parallel()
s := NewSimple("TopHungService")
failNotify := make(chan struct{})
resumeChan := make(chan time.Time)
s.getAfterChan = func(d time.Duration) <-chan time.Time {
return resumeChan
}
s.logBadStop = func(supervisor *Supervisor, s Service, name string) {
failNotify <- struct{}{}
}
service := NewService("Service WillHang")
sToken := s.Add(service)
go s.Serve()
<-service.started
service.take <- Hang
s.Remove(sToken)
resumeChan <- time.Time{}
<-failNotify
service.release <- true
}
func TestRemoveService(t *testing.T) {
t.Parallel()
s := NewSimple("Top")
service := NewService("ServiceToRemove8")
id := s.Add(service)
go s.Serve()
<-service.started
service.take <- UseStopChan
err := s.Remove(id)
if err != nil {
t.Fatal("Removing service somehow failed")
}
<-service.stop
err = s.Remove(ServiceToken{id.id + (1 << 32)})
if err != ErrWrongSupervisor {
t.Fatal("Did not detect that the ServiceToken was wrong")
}
}
func TestFailureToConstruct(t *testing.T) {
t.Parallel()
var s *Supervisor
panics(func() {
s.Serve()
})
s = new(Supervisor)
panics(func() {
s.Serve()
})
}
func TestFailingSupervisors(t *testing.T) {
t.Parallel()
// This is a bit of a complicated test, so let me explain what
// all this is doing:
// 1. Set up a top-level supervisor with a hair-trigger backoff.
// 2. Add a supervisor to that.
// 3. To that supervisor, add a service.
// 4. Panic the supervisor in the middle, sending the top-level into
// backoff.
// 5. Kill the lower level service too.
// 6. Verify that when the top-level service comes out of backoff,
// the service ends up restarted as expected.
// Ultimately, we can't have more than a best-effort recovery here.
// A panic'ed supervisor can't really be trusted to have consistent state,
// and without *that*, we can't trust it to do anything sensible with
// the children it may have been running. So unlike Erlang, we can't
// can't really expect to be able to safely restart them or anything.
// Really, the "correct" answer is that the Supervisor must never panic,
// but in the event that it does, this verifies that it at least tries
// to get on with life.
// This also tests that if a Supervisor itself panics, and one of its
// monitored services goes down in the meantime, that the monitored
// service also gets correctly restarted when the supervisor does.
s1 := NewSimple("Top9")
s2 := NewSimple("Nested9")
service := NewService("Service9")
s1.Add(s2)
s2.Add(service)
go s1.Serve()
<-service.started
s1.failureThreshold = .5
// let us control precisely when s1 comes back
resumeChan := make(chan time.Time)
s1.getAfterChan = func(d time.Duration) <-chan time.Time {
return resumeChan
}
failNotify := make(chan string)
// use this to synchronize on here
s1.logFailure = func(supervisor *Supervisor, s Service, name string, cf float64, ft float64, r bool, error interface{}, stacktrace []byte) {
failNotify <- fmt.Sprintf("%s", s)
}
s2.panic()
failing := <-failNotify
// that's enough sync to guarantee this:
if failing != "Nested9" || s1.state != paused {
t.Fatal("Top-level supervisor did not go into backoff as expected")
}
service.take <- Fail
resumeChan <- time.Time{}
<-service.started
}
func TestNilSupervisorAdd(t *testing.T) {
t.Parallel()
var s *Supervisor
defer func() {
if r := recover(); r == nil {
t.Fatal("did not panic as expected on nil add")
}
}()
s.Add(s)
}
// https://github.com/thejerf/suture/issues/11
//
// The purpose of this test is to verify that it does not cause data races,
// so there are no obvious assertions.
func TestIssue11(t *testing.T) {
t.Parallel()
s := NewSimple("main")
s.ServeBackground()
subsuper := NewSimple("sub")
s.Add(subsuper)
subsuper.Add(NewService("may cause data race"))
}
// http://golangtutorials.blogspot.com/2011/10/gotest-unit-testing-and-benchmarking-go.html
// claims test function are run in the same order as the source file...
// I'm not sure if this is part of the contract, though. Especially in the
// face of "t.Parallel()"...
func TestEverMultistarted(t *testing.T) {
if everMultistarted {
t.Fatal("Seem to have multistarted a service at some point, bummer.")
}
}
// A test service that can be induced to fail, panic, or hang on demand.
func NewService(name string) *FailableService {
return &FailableService{name, make(chan bool), make(chan int),
make(chan bool), make(chan bool), make(chan bool), 0}
}
type FailableService struct {
name string
started chan bool
take chan int
shutdown chan bool
release chan bool
stop chan bool
existing int
}
func (s *FailableService) Serve() {
if s.existing != 0 {
everMultistarted = true
panic("Multi-started the same service! " + s.name)
}
s.existing++
s.started <- true
useStopChan := false
for {
select {
case val := <-s.take:
switch val {
case Happy:
// Do nothing on purpose. Life is good!
case Fail:
s.existing--
if useStopChan {
s.stop <- true
}
return
case Panic:
s.existing--
panic("Panic!")
case Hang:
// or more specifically, "hang until I release you"
<-s.release
case UseStopChan:
useStopChan = true
}
case <-s.shutdown:
s.existing--
if useStopChan {
s.stop <- true
}
return
}
}
}
func (s *FailableService) String() string {
return s.name
}
func (s *FailableService) Stop() {
s.shutdown <- true
}
type NowFeeder struct {
values []time.Time
getter func() time.Time
m sync.Mutex
}
// This is used to test serviceName; it's a service without a Stringer.
type BarelyService struct{}
func (bs *BarelyService) Serve() {}
func (bs *BarelyService) Stop() {}
func NewNowFeeder() (nf *NowFeeder) {
nf = new(NowFeeder)
nf.getter = func() time.Time {
nf.m.Lock()
defer nf.m.Unlock()
if len(nf.values) > 0 {
ret := nf.values[0]
nf.values = nf.values[1:]
return ret
}
panic("Ran out of values for NowFeeder")
}
return
}
func (nf *NowFeeder) appendTimes(t ...time.Time) {
nf.m.Lock()
defer nf.m.Unlock()
nf.values = append(nf.values, t...)
}
func panics(doesItPanic func()) (panics bool) {
defer func() {
if r := recover(); r != nil {
panics = true
}
}()
doesItPanic()
return
}