acl/include/google/protobuf/repeated_field.h

1604 lines
52 KiB
C
Raw Normal View History

// Protocol Buffers - Google's data interchange format
2015-02-04 22:26:20 +08:00
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// Typically, clients should not need to access RepeatedField objects directly,
// but should instead use the accessor functions generated automatically by the
// protocol compiler.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif
#include <string>
#include <iterator>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/type_traits.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/message_lite.h>
namespace google {
namespace upb {
namespace google_opensource {
class GMR_Handlers;
} // namespace google_opensource
} // namespace upb
namespace protobuf {
class Message;
namespace internal {
static const int kMinRepeatedFieldAllocationSize = 4;
// A utility function for logging that doesn't need any template types.
void LogIndexOutOfBounds(int index, int size);
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
return std::distance(begin, end);
}
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::input_iterator_tag) {
return -1;
}
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
typedef typename std::iterator_traits<Iter>::iterator_category Category;
return CalculateReserve(begin, end, Category());
}
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField {
public:
RepeatedField();
RepeatedField(const RepeatedField& other);
template <typename Iter>
RepeatedField(Iter begin, const Iter& end);
~RepeatedField();
RepeatedField& operator=(const RepeatedField& other);
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
void Set(int index, const Element& value);
void Add(const Element& value);
Element* Add();
// Remove the last element in the array.
void RemoveLast();
// Extract elements with indices in "[start .. start+num-1]".
// Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element* elements);
void Clear();
void MergeFrom(const RepeatedField& other);
void CopyFrom(const RepeatedField& other);
// Reserve space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Resize the RepeatedField to a new, smaller size. This is O(1).
void Truncate(int new_size);
void AddAlreadyReserved(const Element& value);
Element* AddAlreadyReserved();
int Capacity() const;
// Like STL resize. Uses value to fill appended elements.
// Like Truncate() if new_size <= size(), otherwise this is
// O(new_size - size()).
void Resize(int new_size, const Element& value);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element* mutable_data();
const Element* data() const;
// Swap entire contents with "other".
void Swap(RepeatedField* other);
// Swap two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef Element* iterator;
typedef const Element* const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Returns the number of bytes used by the repeated field, excluding
// sizeof(*this)
int SpaceUsedExcludingSelf() const;
private:
static const int kInitialSize = 0;
Element* elements_;
int current_size_;
int total_size_;
// Move the contents of |from| into |to|, possibly clobbering |from| in the
// process. For primitive types this is just a memcpy(), but it could be
// specialized for non-primitive types to, say, swap each element instead.
void MoveArray(Element to[], Element from[], int size);
// Copy the elements of |from| into |to|.
void CopyArray(Element to[], const Element from[], int size);
};
namespace internal {
template <typename It> class RepeatedPtrIterator;
template <typename It, typename VoidPtr> class RepeatedPtrOverPtrsIterator;
} // namespace internal
namespace internal {
// This is a helper template to copy an array of elements effeciently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
bool HasTrivialCopy = has_trivial_copy<Element>::value>
struct ElementCopier {
void operator()(Element to[], const Element from[], int array_size);
};
} // namespace internal
namespace internal {
// This is the common base class for RepeatedPtrFields. It deals only in void*
// pointers. Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler. Its signature is:
// class TypeHandler {
// public:
// typedef MyType Type;
// static Type* New();
// static void Delete(Type*);
// static void Clear(Type*);
// static void Merge(const Type& from, Type* to);
//
// // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
// static int SpaceUsed(const Type&);
// };
class LIBPROTOBUF_EXPORT RepeatedPtrFieldBase {
protected:
// The reflection implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class GeneratedMessageReflection;
// ExtensionSet stores repeated message extensions as
// RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to
// implement SpaceUsed(), and thus need to call SpaceUsedExcludingSelf()
// reinterpreting MessageLite as Message. ExtensionSet also needs to make
// use of AddFromCleared(), which is not part of the public interface.
friend class ExtensionSet;
// To parse directly into a proto2 generated class, the upb class GMR_Handlers
// needs to be able to modify a RepeatedPtrFieldBase directly.
friend class LIBPROTOBUF_EXPORT upb::google_opensource::GMR_Handlers;
RepeatedPtrFieldBase();
// Must be called from destructor.
template <typename TypeHandler>
void Destroy();
bool empty() const;
int size() const;
template <typename TypeHandler>
const typename TypeHandler::Type& Get(int index) const;
template <typename TypeHandler>
typename TypeHandler::Type* Mutable(int index);
template <typename TypeHandler>
typename TypeHandler::Type* Add();
template <typename TypeHandler>
void RemoveLast();
template <typename TypeHandler>
void Clear();
template <typename TypeHandler>
void MergeFrom(const RepeatedPtrFieldBase& other);
template <typename TypeHandler>
void CopyFrom(const RepeatedPtrFieldBase& other);
void CloseGap(int start, int num) {
// Close up a gap of "num" elements starting at offset "start".
for (int i = start + num; i < allocated_size_; ++i)
elements_[i - num] = elements_[i];
current_size_ -= num;
allocated_size_ -= num;
}
void Reserve(int new_size);
int Capacity() const;
// Used for constructing iterators.
void* const* raw_data() const;
void** raw_mutable_data() const;
template <typename TypeHandler>
typename TypeHandler::Type** mutable_data();
template <typename TypeHandler>
const typename TypeHandler::Type* const* data() const;
void Swap(RepeatedPtrFieldBase* other);
void SwapElements(int index1, int index2);
template <typename TypeHandler>
int SpaceUsedExcludingSelf() const;
// Advanced memory management --------------------------------------
// Like Add(), but if there are no cleared objects to use, returns NULL.
template <typename TypeHandler>
typename TypeHandler::Type* AddFromCleared();
template <typename TypeHandler>
void AddAllocated(typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLast();
int ClearedCount() const;
template <typename TypeHandler>
void AddCleared(typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseCleared();
private:
static const int kInitialSize = 0;
void** elements_;
int current_size_;
int allocated_size_;
int total_size_;
template <typename TypeHandler>
static inline typename TypeHandler::Type* cast(void* element) {
return reinterpret_cast<typename TypeHandler::Type*>(element);
}
template <typename TypeHandler>
static inline const typename TypeHandler::Type* cast(const void* element) {
return reinterpret_cast<const typename TypeHandler::Type*>(element);
}
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
};
template <typename GenericType>
class GenericTypeHandler {
public:
typedef GenericType Type;
static GenericType* New() { return new GenericType; }
static void Delete(GenericType* value) { delete value; }
static void Clear(GenericType* value) { value->Clear(); }
static void Merge(const GenericType& from, GenericType* to) {
to->MergeFrom(from);
}
static int SpaceUsed(const GenericType& value) { return value.SpaceUsed(); }
static const Type& default_instance() { return Type::default_instance(); }
};
template <>
inline void GenericTypeHandler<MessageLite>::Merge(
const MessageLite& from, MessageLite* to) {
to->CheckTypeAndMergeFrom(from);
}
template <>
inline const MessageLite& GenericTypeHandler<MessageLite>::default_instance() {
// Yes, the behavior of the code is undefined, but this function is only
// called when we're already deep into the world of undefined, because the
// caller called Get(index) out of bounds.
MessageLite* null = NULL;
return *null;
}
template <>
inline const Message& GenericTypeHandler<Message>::default_instance() {
// Yes, the behavior of the code is undefined, but this function is only
// called when we're already deep into the world of undefined, because the
// caller called Get(index) out of bounds.
Message* null = NULL;
return *null;
}
// HACK: If a class is declared as DLL-exported in MSVC, it insists on
// generating copies of all its methods -- even inline ones -- to include
// in the DLL. But SpaceUsed() calls StringSpaceUsedExcludingSelf() which
// isn't in the lite library, therefore the lite library cannot link if
// StringTypeHandler is exported. So, we factor out StringTypeHandlerBase,
// export that, then make StringTypeHandler be a subclass which is NOT
// exported.
// TODO(kenton): There has to be a better way.
class LIBPROTOBUF_EXPORT StringTypeHandlerBase {
public:
typedef string Type;
static string* New();
static void Delete(string* value);
static void Clear(string* value) { value->clear(); }
static void Merge(const string& from, string* to) { *to = from; }
static const Type& default_instance() {
return ::google::protobuf::internal::GetEmptyString();
}
};
class StringTypeHandler : public StringTypeHandlerBase {
public:
static int SpaceUsed(const string& value) {
return sizeof(value) + StringSpaceUsedExcludingSelf(value);
}
};
} // namespace internal
// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField : public internal::RepeatedPtrFieldBase {
public:
RepeatedPtrField();
RepeatedPtrField(const RepeatedPtrField& other);
template <typename Iter>
RepeatedPtrField(Iter begin, const Iter& end);
~RepeatedPtrField();
RepeatedPtrField& operator=(const RepeatedPtrField& other);
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
Element* Add();
// Remove the last element in the array.
// Ownership of the element is retained by the array.
void RemoveLast();
// Delete elements with indices in the range [start .. start+num-1].
// Caution: implementation moves all elements with indices [start+num .. ].
// Calling this routine inside a loop can cause quadratic behavior.
void DeleteSubrange(int start, int num);
void Clear();
void MergeFrom(const RepeatedPtrField& other);
void CopyFrom(const RepeatedPtrField& other);
// Reserve space to expand the field to at least the given size. This only
// resizes the pointer array; it doesn't allocate any objects. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
int Capacity() const;
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element** mutable_data();
const Element* const* data() const;
// Swap entire contents with "other".
void Swap(RepeatedPtrField* other);
// Swap two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef internal::RepeatedPtrIterator<Element> iterator;
typedef internal::RepeatedPtrIterator<const Element> const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Custom STL-like iterator that iterates over and returns the underlying
// pointers to Element rather than Element itself.
typedef internal::RepeatedPtrOverPtrsIterator<Element, void*>
pointer_iterator;
typedef internal::RepeatedPtrOverPtrsIterator<const Element, const void*>
const_pointer_iterator;
pointer_iterator pointer_begin();
const_pointer_iterator pointer_begin() const;
pointer_iterator pointer_end();
const_pointer_iterator pointer_end() const;
// Returns (an estimate of) the number of bytes used by the repeated field,
// excluding sizeof(*this).
int SpaceUsedExcludingSelf() const;
// Advanced memory management --------------------------------------
// When hardcore memory management becomes necessary -- as it sometimes
// does here at Google -- the following methods may be useful.
// Add an already-allocated object, passing ownership to the
// RepeatedPtrField.
void AddAllocated(Element* value);
// Remove the last element and return it, passing ownership to the caller.
// Requires: size() > 0
Element* ReleaseLast();
// Extract elements with indices in the range "[start .. start+num-1]".
// The caller assumes ownership of the extracted elements and is responsible
// for deleting them when they are no longer needed.
// If "elements" is non-NULL, then pointers to the extracted elements
// are stored in "elements[0 .. num-1]" for the convenience of the caller.
// If "elements" is NULL, then the caller must use some other mechanism
// to perform any further operations (like deletion) on these elements.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element** elements);
// When elements are removed by calls to RemoveLast() or Clear(), they
// are not actually freed. Instead, they are cleared and kept so that
// they can be reused later. This can save lots of CPU time when
// repeatedly reusing a protocol message for similar purposes.
//
// Hardcore programs may choose to manipulate these cleared objects
// to better optimize memory management using the following routines.
// Get the number of cleared objects that are currently being kept
// around for reuse.
int ClearedCount() const;
// Add an element to the pool of cleared objects, passing ownership to
// the RepeatedPtrField. The element must be cleared prior to calling
// this method.
void AddCleared(Element* value);
// Remove a single element from the cleared pool and return it, passing
// ownership to the caller. The element is guaranteed to be cleared.
// Requires: ClearedCount() > 0
Element* ReleaseCleared();
protected:
// Note: RepeatedPtrField SHOULD NOT be subclassed by users. We only
// subclass it in one place as a hack for compatibility with proto1. The
// subclass needs to know about TypeHandler in order to call protected
// methods on RepeatedPtrFieldBase.
class TypeHandler;
};
// implementation ====================================================
template <typename Element>
inline RepeatedField<Element>::RepeatedField()
: elements_(NULL),
current_size_(0),
total_size_(kInitialSize) {
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
: elements_(NULL),
current_size_(0),
total_size_(kInitialSize) {
CopyFrom(other);
}
template <typename Element>
template <typename Iter>
inline RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
: elements_(NULL),
current_size_(0),
total_size_(kInitialSize) {
int reserve = internal::CalculateReserve(begin, end);
if (reserve != -1) {
Reserve(reserve);
for (; begin != end; ++begin) {
AddAlreadyReserved(*begin);
}
} else {
for (; begin != end; ++begin) {
Add(*begin);
}
}
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
delete [] elements_;
}
template <typename Element>
inline RepeatedField<Element>&
RepeatedField<Element>::operator=(const RepeatedField& other) {
if (this != &other)
CopyFrom(other);
return *this;
}
template <typename Element>
inline bool RepeatedField<Element>::empty() const {
return current_size_ == 0;
}
template <typename Element>
inline int RepeatedField<Element>::size() const {
return current_size_;
}
template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
return total_size_;
}
template<typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
GOOGLE_DCHECK_LT(size(), Capacity());
elements_[current_size_++] = value;
}
template<typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
GOOGLE_DCHECK_LT(size(), Capacity());
return &elements_[current_size_++];
}
template<typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
GOOGLE_DCHECK_GE(new_size, 0);
if (new_size > size()) {
Reserve(new_size);
std::fill(&elements_[current_size_], &elements_[new_size], value);
}
current_size_ = new_size;
}
template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return elements_[index];
}
template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return elements_ + index;
}
template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
elements_[index] = value;
}
template <typename Element>
inline void RepeatedField<Element>::Add(const Element& value) {
if (current_size_ == total_size_) Reserve(total_size_ + 1);
elements_[current_size_++] = value;
}
template <typename Element>
inline Element* RepeatedField<Element>::Add() {
if (current_size_ == total_size_) Reserve(total_size_ + 1);
return &elements_[current_size_++];
}
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
--current_size_;
}
template <typename Element>
void RepeatedField<Element>::ExtractSubrange(
int start, int num, Element* elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, this->size());
// Save the values of the removed elements if requested.
if (elements != NULL) {
for (int i = 0; i < num; ++i)
elements[i] = this->Get(i + start);
}
// Slide remaining elements down to fill the gap.
if (num > 0) {
for (int i = start + num; i < this->size(); ++i)
this->Set(i - num, this->Get(i));
this->Truncate(this->size() - num);
}
}
template <typename Element>
inline void RepeatedField<Element>::Clear() {
current_size_ = 0;
}
template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
GOOGLE_CHECK_NE(&other, this);
if (other.current_size_ != 0) {
Reserve(current_size_ + other.current_size_);
CopyArray(elements_ + current_size_, other.elements_, other.current_size_);
current_size_ += other.current_size_;
}
}
template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
if (&other == this) return;
Clear();
MergeFrom(other);
}
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
return elements_;
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
return elements_;
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
if (this == other) return;
Element* swap_elements = elements_;
int swap_current_size = current_size_;
int swap_total_size = total_size_;
elements_ = other->elements_;
current_size_ = other->current_size_;
total_size_ = other->total_size_;
other->elements_ = swap_elements;
other->current_size_ = swap_current_size;
other->total_size_ = swap_total_size;
}
template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(elements_[index1], elements_[index2]);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
return elements_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
return elements_;
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::end() {
return elements_ + current_size_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
return elements_ + current_size_;
}
template <typename Element>
inline int RepeatedField<Element>::SpaceUsedExcludingSelf() const {
return (elements_ != NULL) ? total_size_ * sizeof(elements_[0]) : 0;
}
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
if (total_size_ >= new_size) return;
Element* old_elements = elements_;
total_size_ = max(google::protobuf::internal::kMinRepeatedFieldAllocationSize,
max(total_size_ * 2, new_size));
elements_ = new Element[total_size_];
if (old_elements != NULL) {
MoveArray(elements_, old_elements, current_size_);
delete [] old_elements;
}
}
template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
GOOGLE_DCHECK_LE(new_size, current_size_);
current_size_ = new_size;
}
template <typename Element>
inline void RepeatedField<Element>::MoveArray(
Element to[], Element from[], int array_size) {
CopyArray(to, from, array_size);
}
template <typename Element>
inline void RepeatedField<Element>::CopyArray(
Element to[], const Element from[], int array_size) {
internal::ElementCopier<Element>()(to, from, array_size);
}
namespace internal {
template <typename Element, bool HasTrivialCopy>
void ElementCopier<Element, HasTrivialCopy>::operator()(
Element to[], const Element from[], int array_size) {
std::copy(from, from + array_size, to);
}
template <typename Element>
struct ElementCopier<Element, true> {
void operator()(Element to[], const Element from[], int array_size) {
memcpy(to, from, array_size * sizeof(Element));
}
};
} // namespace internal
// -------------------------------------------------------------------
namespace internal {
inline RepeatedPtrFieldBase::RepeatedPtrFieldBase()
: elements_(NULL),
current_size_(0),
allocated_size_(0),
total_size_(kInitialSize) {
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::Destroy() {
for (int i = 0; i < allocated_size_; i++) {
TypeHandler::Delete(cast<TypeHandler>(elements_[i]));
}
delete [] elements_;
}
inline bool RepeatedPtrFieldBase::empty() const {
return current_size_ == 0;
}
inline int RepeatedPtrFieldBase::size() const {
return current_size_;
}
template <typename TypeHandler>
inline const typename TypeHandler::Type&
RepeatedPtrFieldBase::Get(int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return *cast<TypeHandler>(elements_[index]);
}
template <typename TypeHandler>
inline typename TypeHandler::Type*
RepeatedPtrFieldBase::Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, size());
return cast<TypeHandler>(elements_[index]);
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add() {
if (current_size_ < allocated_size_) {
return cast<TypeHandler>(elements_[current_size_++]);
}
if (allocated_size_ == total_size_) Reserve(total_size_ + 1);
typename TypeHandler::Type* result = TypeHandler::New();
++allocated_size_;
elements_[current_size_++] = result;
return result;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
TypeHandler::Clear(cast<TypeHandler>(elements_[--current_size_]));
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::Clear() {
for (int i = 0; i < current_size_; i++) {
TypeHandler::Clear(cast<TypeHandler>(elements_[i]));
}
current_size_ = 0;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
GOOGLE_CHECK_NE(&other, this);
Reserve(current_size_ + other.current_size_);
for (int i = 0; i < other.current_size_; i++) {
TypeHandler::Merge(other.template Get<TypeHandler>(i), Add<TypeHandler>());
}
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
if (&other == this) return;
RepeatedPtrFieldBase::Clear<TypeHandler>();
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
inline int RepeatedPtrFieldBase::Capacity() const {
return total_size_;
}
inline void* const* RepeatedPtrFieldBase::raw_data() const {
return elements_;
}
inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
return elements_;
}
template <typename TypeHandler>
inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<typename TypeHandler::Type**>(elements_);
}
template <typename TypeHandler>
inline const typename TypeHandler::Type* const*
RepeatedPtrFieldBase::data() const {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<const typename TypeHandler::Type* const*>(elements_);
}
inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(elements_[index1], elements_[index2]);
}
template <typename TypeHandler>
inline int RepeatedPtrFieldBase::SpaceUsedExcludingSelf() const {
int allocated_bytes =
(elements_ != NULL) ? total_size_ * sizeof(elements_[0]) : 0;
for (int i = 0; i < allocated_size_; ++i) {
allocated_bytes += TypeHandler::SpaceUsed(*cast<TypeHandler>(elements_[i]));
}
return allocated_bytes;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
if (current_size_ < allocated_size_) {
return cast<TypeHandler>(elements_[current_size_++]);
} else {
return NULL;
}
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocated(
typename TypeHandler::Type* value) {
// Make room for the new pointer.
if (current_size_ == total_size_) {
// The array is completely full with no cleared objects, so grow it.
Reserve(total_size_ + 1);
++allocated_size_;
} else if (allocated_size_ == total_size_) {
// There is no more space in the pointer array because it contains some
// cleared objects awaiting reuse. We don't want to grow the array in this
// case because otherwise a loop calling AddAllocated() followed by Clear()
// would leak memory.
TypeHandler::Delete(cast<TypeHandler>(elements_[current_size_]));
} else if (current_size_ < allocated_size_) {
// We have some cleared objects. We don't care about their order, so we
// can just move the first one to the end to make space.
elements_[allocated_size_] = elements_[current_size_];
++allocated_size_;
} else {
// There are no cleared objects.
++allocated_size_;
}
elements_[current_size_++] = value;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
typename TypeHandler::Type* result =
cast<TypeHandler>(elements_[--current_size_]);
--allocated_size_;
if (current_size_ < allocated_size_) {
// There are cleared elements on the end; replace the removed element
// with the last allocated element.
elements_[current_size_] = elements_[allocated_size_];
}
return result;
}
inline int RepeatedPtrFieldBase::ClearedCount() const {
return allocated_size_ - current_size_;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::AddCleared(
typename TypeHandler::Type* value) {
if (allocated_size_ == total_size_) Reserve(total_size_ + 1);
elements_[allocated_size_++] = value;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
GOOGLE_DCHECK_GT(allocated_size_, current_size_);
return cast<TypeHandler>(elements_[--allocated_size_]);
}
} // namespace internal
// -------------------------------------------------------------------
template <typename Element>
class RepeatedPtrField<Element>::TypeHandler
: public internal::GenericTypeHandler<Element> {
};
template <>
class RepeatedPtrField<string>::TypeHandler
: public internal::StringTypeHandler {
};
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField() {}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
const RepeatedPtrField& other)
: RepeatedPtrFieldBase() {
CopyFrom(other);
}
template <typename Element>
template <typename Iter>
inline RepeatedPtrField<Element>::RepeatedPtrField(
Iter begin, const Iter& end) {
int reserve = internal::CalculateReserve(begin, end);
if (reserve != -1) {
Reserve(reserve);
}
for (; begin != end; ++begin) {
*Add() = *begin;
}
}
template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
Destroy<TypeHandler>();
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
const RepeatedPtrField& other) {
if (this != &other)
CopyFrom(other);
return *this;
}
template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
return RepeatedPtrFieldBase::empty();
}
template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
return RepeatedPtrFieldBase::size();
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
return RepeatedPtrFieldBase::Add<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
for (int i = 0; i < num; ++i)
delete RepeatedPtrFieldBase::Mutable<TypeHandler>(start + i);
ExtractSubrange(start, num, NULL);
}
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(
int start, int num, Element** elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
if (num > 0) {
// Save the values of the removed elements if requested.
if (elements != NULL) {
for (int i = 0; i < num; ++i)
elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
}
CloseGap(start, num);
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
RepeatedPtrFieldBase::Clear<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
const RepeatedPtrField& other) {
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(
const RepeatedPtrField& other) {
RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}
template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}
template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
return RepeatedPtrFieldBase::data<TypeHandler>();
}
template <typename Element>
void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
RepeatedPtrFieldBase::Swap(other);
}
template <typename Element>
void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
RepeatedPtrFieldBase::SwapElements(index1, index2);
}
template <typename Element>
inline int RepeatedPtrField<Element>::SpaceUsedExcludingSelf() const {
return RepeatedPtrFieldBase::SpaceUsedExcludingSelf<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}
template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
return RepeatedPtrFieldBase::ClearedCount();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
return RepeatedPtrFieldBase::Reserve(new_size);
}
template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
return RepeatedPtrFieldBase::Capacity();
}
// -------------------------------------------------------------------
namespace internal {
// STL-like iterator implementation for RepeatedPtrField. You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template<typename Element>
class RepeatedPtrIterator
: public std::iterator<
std::random_access_iterator_tag, Element> {
public:
typedef RepeatedPtrIterator<Element> iterator;
typedef std::iterator<
std::random_access_iterator_tag, Element> superclass;
// Shadow the value_type in std::iterator<> because const_iterator::value_type
// needs to be T, not const T.
typedef typename remove_const<Element>::type value_type;
// Let the compiler know that these are type names, so we don't have to
// write "typename" in front of them everywhere.
typedef typename superclass::reference reference;
typedef typename superclass::pointer pointer;
typedef typename superclass::difference_type difference_type;
RepeatedPtrIterator() : it_(NULL) {}
explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
// Allow "upcasting" from RepeatedPtrIterator<T**> to
// RepeatedPtrIterator<const T*const*>.
template<typename OtherElement>
RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
: it_(other.it_) {
// Force a compiler error if the other type is not convertible to ours.
if (false) {
implicit_cast<Element*, OtherElement*>(0);
}
}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() { ++it_; return *this; }
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() { --it_; return *this; }
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
bool operator==(const iterator& x) const { return it_ == x.it_; }
bool operator!=(const iterator& x) const { return it_ != x.it_; }
// less_than_comparable
bool operator<(const iterator& x) const { return it_ < x.it_; }
bool operator<=(const iterator& x) const { return it_ <= x.it_; }
bool operator>(const iterator& x) const { return it_ > x.it_; }
bool operator>=(const iterator& x) const { return it_ >= x.it_; }
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
difference_type operator-(const iterator& x) const { return it_ - x.it_; }
private:
template<typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
void* const* it_;
};
// Provide an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator. It should either be "void *" for a mutable
// iterator, or "const void *" for a constant iterator.
template<typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator
: public std::iterator<std::random_access_iterator_tag, Element*> {
public:
typedef RepeatedPtrOverPtrsIterator<Element, VoidPtr> iterator;
typedef std::iterator<
std::random_access_iterator_tag, Element*> superclass;
// Shadow the value_type in std::iterator<> because const_iterator::value_type
// needs to be T, not const T.
typedef typename remove_const<Element*>::type value_type;
// Let the compiler know that these are type names, so we don't have to
// write "typename" in front of them everywhere.
typedef typename superclass::reference reference;
typedef typename superclass::pointer pointer;
typedef typename superclass::difference_type difference_type;
RepeatedPtrOverPtrsIterator() : it_(NULL) {}
explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element**>(it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() { ++it_; return *this; }
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() { --it_; return *this; }
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
bool operator==(const iterator& x) const { return it_ == x.it_; }
bool operator!=(const iterator& x) const { return it_ != x.it_; }
// less_than_comparable
bool operator<(const iterator& x) const { return it_ < x.it_; }
bool operator<=(const iterator& x) const { return it_ <= x.it_; }
bool operator>(const iterator& x) const { return it_ > x.it_; }
bool operator>=(const iterator& x) const { return it_ >= x.it_; }
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
difference_type operator-(const iterator& x) const { return it_ - x.it_; }
private:
template<typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
VoidPtr* it_;
};
} // namespace internal
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() {
return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const {
return const_pointer_iterator(const_cast<const void**>(raw_mutable_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() {
return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const {
return const_pointer_iterator(
const_cast<const void**>(raw_mutable_data() + size()));
}
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// google::protobuf::RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// A back inserter for RepeatedField objects.
template<typename T> class RepeatedFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
explicit RepeatedFieldBackInsertIterator(
RepeatedField<T>* const mutable_field)
: field_(mutable_field) {
}
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
field_->Add(value);
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator*() {
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator++() {
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedField<T>* field_;
};
// A back inserter for RepeatedPtrField objects.
template<typename T> class RepeatedPtrFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
RepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
*field_->Add() = value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(
const T* const ptr_to_value) {
*field_->Add() = *ptr_to_value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator*() {
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator++() {
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// A back inserter for RepeatedPtrFields that inserts by transfering ownership
// of a pointer.
template<typename T> class AllocatedRepeatedPtrFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
explicit AllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T* const ptr_to_value) {
field_->AddAllocated(ptr_to_value);
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template<typename T> internal::RepeatedFieldBackInsertIterator<T>
RepeatedFieldBackInserter(RepeatedField<T>* const mutable_field) {
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
RepeatedPtrFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
RepeatedFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template<typename T> internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__