// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // http://code.google.com/p/protobuf/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // wink@google.com (Wink Saville) (refactored from wire_format.h) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_INL_H__ #define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_INL_H__ #ifdef _MSC_VER // This is required for min/max on VS2013 only. #include #endif #include #include #include #include #include #include namespace google { namespace protobuf { namespace internal { // Implementation details of ReadPrimitive. template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int32* value) { uint32 temp; if (!input->ReadVarint32(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int64* value) { uint64 temp; if (!input->ReadVarint64(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint32* value) { return input->ReadVarint32(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint64* value) { return input->ReadVarint64(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int32* value) { uint32 temp; if (!input->ReadVarint32(&temp)) return false; *value = ZigZagDecode32(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int64* value) { uint64 temp; if (!input->ReadVarint64(&temp)) return false; *value = ZigZagDecode64(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint32* value) { return input->ReadLittleEndian32(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, uint64* value) { return input->ReadLittleEndian64(value); } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int32* value) { uint32 temp; if (!input->ReadLittleEndian32(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int64* value) { uint64 temp; if (!input->ReadLittleEndian64(&temp)) return false; *value = static_cast(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, float* value) { uint32 temp; if (!input->ReadLittleEndian32(&temp)) return false; *value = DecodeFloat(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, double* value) { uint64 temp; if (!input->ReadLittleEndian64(&temp)) return false; *value = DecodeDouble(temp); return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, bool* value) { uint64 temp; if (!input->ReadVarint64(&temp)) return false; *value = temp != 0; return true; } template <> inline bool WireFormatLite::ReadPrimitive( io::CodedInputStream* input, int* value) { uint32 temp; if (!input->ReadVarint32(&temp)) return false; *value = static_cast(temp); return true; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray< uint32, WireFormatLite::TYPE_FIXED32>( const uint8* buffer, uint32* value) { return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value); } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray< uint64, WireFormatLite::TYPE_FIXED64>( const uint8* buffer, uint64* value) { return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value); } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray< int32, WireFormatLite::TYPE_SFIXED32>( const uint8* buffer, int32* value) { uint32 temp; buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp); *value = static_cast(temp); return buffer; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray< int64, WireFormatLite::TYPE_SFIXED64>( const uint8* buffer, int64* value) { uint64 temp; buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp); *value = static_cast(temp); return buffer; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray< float, WireFormatLite::TYPE_FLOAT>( const uint8* buffer, float* value) { uint32 temp; buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp); *value = DecodeFloat(temp); return buffer; } template <> inline const uint8* WireFormatLite::ReadPrimitiveFromArray< double, WireFormatLite::TYPE_DOUBLE>( const uint8* buffer, double* value) { uint64 temp; buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp); *value = DecodeDouble(temp); return buffer; } template inline bool WireFormatLite::ReadRepeatedPrimitive( int, // tag_size, unused. uint32 tag, io::CodedInputStream* input, RepeatedField* values) { CType value; if (!ReadPrimitive(input, &value)) return false; values->Add(value); int elements_already_reserved = values->Capacity() - values->size(); while (elements_already_reserved > 0 && input->ExpectTag(tag)) { if (!ReadPrimitive(input, &value)) return false; values->AddAlreadyReserved(value); elements_already_reserved--; } return true; } template inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive( int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* values) { GOOGLE_DCHECK_EQ(UInt32Size(tag), tag_size); CType value; if (!ReadPrimitive(input, &value)) return false; values->Add(value); // For fixed size values, repeated values can be read more quickly by // reading directly from a raw array. // // We can get a tight loop by only reading as many elements as can be // added to the RepeatedField without having to do any resizing. Additionally, // we only try to read as many elements as are available from the current // buffer space. Doing so avoids having to perform boundary checks when // reading the value: the maximum number of elements that can be read is // known outside of the loop. const void* void_pointer; int size; input->GetDirectBufferPointerInline(&void_pointer, &size); if (size > 0) { const uint8* buffer = reinterpret_cast(void_pointer); // The number of bytes each type occupies on the wire. const int per_value_size = tag_size + sizeof(value); int elements_available = min(values->Capacity() - values->size(), size / per_value_size); int num_read = 0; while (num_read < elements_available && (buffer = io::CodedInputStream::ExpectTagFromArray( buffer, tag)) != NULL) { buffer = ReadPrimitiveFromArray(buffer, &value); values->AddAlreadyReserved(value); ++num_read; } const int read_bytes = num_read * per_value_size; if (read_bytes > 0) { input->Skip(read_bytes); } } return true; } // Specializations of ReadRepeatedPrimitive for the fixed size types, which use // the optimized code path. #define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ template <> \ inline bool WireFormatLite::ReadRepeatedPrimitive< \ CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ int tag_size, \ uint32 tag, \ io::CodedInputStream* input, \ RepeatedField* values) { \ return ReadRepeatedFixedSizePrimitive< \ CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ tag_size, tag, input, values); \ } READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32) READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64) READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32) READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64) READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) #undef READ_REPEATED_FIXED_SIZE_PRIMITIVE template bool WireFormatLite::ReadRepeatedPrimitiveNoInline( int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* value) { return ReadRepeatedPrimitive( tag_size, tag, input, value); } template inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input, RepeatedField* values) { uint32 length; if (!input->ReadVarint32(&length)) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); while (input->BytesUntilLimit() > 0) { CType value; if (!ReadPrimitive(input, &value)) return false; values->Add(value); } input->PopLimit(limit); return true; } template inline bool WireFormatLite::ReadPackedFixedSizePrimitive( io::CodedInputStream* input, RepeatedField* values) { uint32 length; if (!input->ReadVarint32(&length)) return false; const uint32 old_entries = values->size(); const uint32 new_entries = length / sizeof(CType); const uint32 new_bytes = new_entries * sizeof(CType); if (new_bytes != length) return false; // We would *like* to pre-allocate the buffer to write into (for // speed), but *must* avoid performing a very large allocation due // to a malicious user-supplied "length" above. So we have a fast // path that pre-allocates when the "length" is less than a bound. // We determine the bound by calling BytesUntilTotalBytesLimit() and // BytesUntilLimit(). These return -1 to mean "no limit set". // There are four cases: // TotalBytesLimit Limit // -1 -1 Use slow path. // -1 >= 0 Use fast path if length <= Limit. // >= 0 -1 Use slow path. // >= 0 >= 0 Use fast path if length <= min(both limits). int64 bytes_limit = input->BytesUntilTotalBytesLimit(); if (bytes_limit == -1) { bytes_limit = input->BytesUntilLimit(); } else { bytes_limit = min(bytes_limit, static_cast(input->BytesUntilLimit())); } if (bytes_limit >= new_bytes) { // Fast-path that pre-allocates *values to the final size. #if defined(PROTOBUF_LITTLE_ENDIAN) values->Resize(old_entries + new_entries, 0); // values->mutable_data() may change after Resize(), so do this after: void* dest = reinterpret_cast(values->mutable_data() + old_entries); if (!input->ReadRaw(dest, new_bytes)) { values->Truncate(old_entries); return false; } #else values->Reserve(old_entries + new_entries); CType value; for (int i = 0; i < new_entries; ++i) { if (!ReadPrimitive(input, &value)) return false; values->AddAlreadyReserved(value); } #endif } else { // This is the slow-path case where "length" may be too large to // safely allocate. We read as much as we can into *values // without pre-allocating "length" bytes. CType value; for (uint32 i = 0; i < new_entries; ++i) { if (!ReadPrimitive(input, &value)) return false; values->Add(value); } } return true; } // Specializations of ReadPackedPrimitive for the fixed size types, which use // an optimized code path. #define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ template <> \ inline bool WireFormatLite::ReadPackedPrimitive< \ CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ io::CodedInputStream* input, \ RepeatedField* values) { \ return ReadPackedFixedSizePrimitive< \ CPPTYPE, WireFormatLite::DECLARED_TYPE>(input, values); \ } READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32); READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64); READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32); READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64); READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT); READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE); #undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE template bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input, RepeatedField* values) { return ReadPackedPrimitive(input, values); } inline bool WireFormatLite::ReadGroup(int field_number, io::CodedInputStream* input, MessageLite* value) { if (!input->IncrementRecursionDepth()) return false; if (!value->MergePartialFromCodedStream(input)) return false; input->DecrementRecursionDepth(); // Make sure the last thing read was an end tag for this group. if (!input->LastTagWas(MakeTag(field_number, WIRETYPE_END_GROUP))) { return false; } return true; } inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input, MessageLite* value) { uint32 length; if (!input->ReadVarint32(&length)) return false; if (!input->IncrementRecursionDepth()) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); if (!value->MergePartialFromCodedStream(input)) return false; // Make sure that parsing stopped when the limit was hit, not at an endgroup // tag. if (!input->ConsumedEntireMessage()) return false; input->PopLimit(limit); input->DecrementRecursionDepth(); return true; } // We name the template parameter something long and extremely unlikely to occur // elsewhere because a *qualified* member access expression designed to avoid // virtual dispatch, C++03 [basic.lookup.classref] 3.4.5/4 requires that the // name of the qualifying class to be looked up both in the context of the full // expression (finding the template parameter) and in the context of the object // whose member we are accessing. This could potentially find a nested type // within that object. The standard goes on to require these names to refer to // the same entity, which this collision would violate. The lack of a safe way // to avoid this collision appears to be a defect in the standard, but until it // is corrected, we choose the name to avoid accidental collisions. template inline bool WireFormatLite::ReadGroupNoVirtual( int field_number, io::CodedInputStream* input, MessageType_WorkAroundCppLookupDefect* value) { if (!input->IncrementRecursionDepth()) return false; if (!value-> MessageType_WorkAroundCppLookupDefect::MergePartialFromCodedStream(input)) return false; input->DecrementRecursionDepth(); // Make sure the last thing read was an end tag for this group. if (!input->LastTagWas(MakeTag(field_number, WIRETYPE_END_GROUP))) { return false; } return true; } template inline bool WireFormatLite::ReadMessageNoVirtual( io::CodedInputStream* input, MessageType_WorkAroundCppLookupDefect* value) { uint32 length; if (!input->ReadVarint32(&length)) return false; if (!input->IncrementRecursionDepth()) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); if (!value-> MessageType_WorkAroundCppLookupDefect::MergePartialFromCodedStream(input)) return false; // Make sure that parsing stopped when the limit was hit, not at an endgroup // tag. if (!input->ConsumedEntireMessage()) return false; input->PopLimit(limit); input->DecrementRecursionDepth(); return true; } // =================================================================== inline void WireFormatLite::WriteTag(int field_number, WireType type, io::CodedOutputStream* output) { output->WriteTag(MakeTag(field_number, type)); } inline void WireFormatLite::WriteInt32NoTag(int32 value, io::CodedOutputStream* output) { output->WriteVarint32SignExtended(value); } inline void WireFormatLite::WriteInt64NoTag(int64 value, io::CodedOutputStream* output) { output->WriteVarint64(static_cast(value)); } inline void WireFormatLite::WriteUInt32NoTag(uint32 value, io::CodedOutputStream* output) { output->WriteVarint32(value); } inline void WireFormatLite::WriteUInt64NoTag(uint64 value, io::CodedOutputStream* output) { output->WriteVarint64(value); } inline void WireFormatLite::WriteSInt32NoTag(int32 value, io::CodedOutputStream* output) { output->WriteVarint32(ZigZagEncode32(value)); } inline void WireFormatLite::WriteSInt64NoTag(int64 value, io::CodedOutputStream* output) { output->WriteVarint64(ZigZagEncode64(value)); } inline void WireFormatLite::WriteFixed32NoTag(uint32 value, io::CodedOutputStream* output) { output->WriteLittleEndian32(value); } inline void WireFormatLite::WriteFixed64NoTag(uint64 value, io::CodedOutputStream* output) { output->WriteLittleEndian64(value); } inline void WireFormatLite::WriteSFixed32NoTag(int32 value, io::CodedOutputStream* output) { output->WriteLittleEndian32(static_cast(value)); } inline void WireFormatLite::WriteSFixed64NoTag(int64 value, io::CodedOutputStream* output) { output->WriteLittleEndian64(static_cast(value)); } inline void WireFormatLite::WriteFloatNoTag(float value, io::CodedOutputStream* output) { output->WriteLittleEndian32(EncodeFloat(value)); } inline void WireFormatLite::WriteDoubleNoTag(double value, io::CodedOutputStream* output) { output->WriteLittleEndian64(EncodeDouble(value)); } inline void WireFormatLite::WriteBoolNoTag(bool value, io::CodedOutputStream* output) { output->WriteVarint32(value ? 1 : 0); } inline void WireFormatLite::WriteEnumNoTag(int value, io::CodedOutputStream* output) { output->WriteVarint32SignExtended(value); } // See comment on ReadGroupNoVirtual to understand the need for this template // parameter name. template inline void WireFormatLite::WriteGroupNoVirtual( int field_number, const MessageType_WorkAroundCppLookupDefect& value, io::CodedOutputStream* output) { WriteTag(field_number, WIRETYPE_START_GROUP, output); value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); WriteTag(field_number, WIRETYPE_END_GROUP, output); } template inline void WireFormatLite::WriteMessageNoVirtual( int field_number, const MessageType_WorkAroundCppLookupDefect& value, io::CodedOutputStream* output) { WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output); output->WriteVarint32( value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()); value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); } // =================================================================== inline uint8* WireFormatLite::WriteTagToArray(int field_number, WireType type, uint8* target) { return io::CodedOutputStream::WriteTagToArray(MakeTag(field_number, type), target); } inline uint8* WireFormatLite::WriteInt32NoTagToArray(int32 value, uint8* target) { return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); } inline uint8* WireFormatLite::WriteInt64NoTagToArray(int64 value, uint8* target) { return io::CodedOutputStream::WriteVarint64ToArray( static_cast(value), target); } inline uint8* WireFormatLite::WriteUInt32NoTagToArray(uint32 value, uint8* target) { return io::CodedOutputStream::WriteVarint32ToArray(value, target); } inline uint8* WireFormatLite::WriteUInt64NoTagToArray(uint64 value, uint8* target) { return io::CodedOutputStream::WriteVarint64ToArray(value, target); } inline uint8* WireFormatLite::WriteSInt32NoTagToArray(int32 value, uint8* target) { return io::CodedOutputStream::WriteVarint32ToArray(ZigZagEncode32(value), target); } inline uint8* WireFormatLite::WriteSInt64NoTagToArray(int64 value, uint8* target) { return io::CodedOutputStream::WriteVarint64ToArray(ZigZagEncode64(value), target); } inline uint8* WireFormatLite::WriteFixed32NoTagToArray(uint32 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target); } inline uint8* WireFormatLite::WriteFixed64NoTagToArray(uint64 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target); } inline uint8* WireFormatLite::WriteSFixed32NoTagToArray(int32 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian32ToArray( static_cast(value), target); } inline uint8* WireFormatLite::WriteSFixed64NoTagToArray(int64 value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian64ToArray( static_cast(value), target); } inline uint8* WireFormatLite::WriteFloatNoTagToArray(float value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian32ToArray(EncodeFloat(value), target); } inline uint8* WireFormatLite::WriteDoubleNoTagToArray(double value, uint8* target) { return io::CodedOutputStream::WriteLittleEndian64ToArray(EncodeDouble(value), target); } inline uint8* WireFormatLite::WriteBoolNoTagToArray(bool value, uint8* target) { return io::CodedOutputStream::WriteVarint32ToArray(value ? 1 : 0, target); } inline uint8* WireFormatLite::WriteEnumNoTagToArray(int value, uint8* target) { return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); } inline uint8* WireFormatLite::WriteInt32ToArray(int field_number, int32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteInt32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteInt64ToArray(int field_number, int64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteInt64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteUInt32ToArray(int field_number, uint32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteUInt32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteUInt64ToArray(int field_number, uint64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteUInt64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSInt32ToArray(int field_number, int32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteSInt32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSInt64ToArray(int field_number, int64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteSInt64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteFixed32ToArray(int field_number, uint32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target); return WriteFixed32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteFixed64ToArray(int field_number, uint64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target); return WriteFixed64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSFixed32ToArray(int field_number, int32 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target); return WriteSFixed32NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteSFixed64ToArray(int field_number, int64 value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target); return WriteSFixed64NoTagToArray(value, target); } inline uint8* WireFormatLite::WriteFloatToArray(int field_number, float value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target); return WriteFloatNoTagToArray(value, target); } inline uint8* WireFormatLite::WriteDoubleToArray(int field_number, double value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target); return WriteDoubleNoTagToArray(value, target); } inline uint8* WireFormatLite::WriteBoolToArray(int field_number, bool value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteBoolNoTagToArray(value, target); } inline uint8* WireFormatLite::WriteEnumToArray(int field_number, int value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_VARINT, target); return WriteEnumNoTagToArray(value, target); } inline uint8* WireFormatLite::WriteStringToArray(int field_number, const string& value, uint8* target) { // String is for UTF-8 text only // WARNING: In wire_format.cc, both strings and bytes are handled by // WriteString() to avoid code duplication. If the implementations become // different, you will need to update that usage. target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); return io::CodedOutputStream::WriteStringWithSizeToArray(value, target); } inline uint8* WireFormatLite::WriteBytesToArray(int field_number, const string& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); return io::CodedOutputStream::WriteStringWithSizeToArray(value, target); } inline uint8* WireFormatLite::WriteGroupToArray(int field_number, const MessageLite& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target); target = value.SerializeWithCachedSizesToArray(target); return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target); } inline uint8* WireFormatLite::WriteMessageToArray(int field_number, const MessageLite& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); target = io::CodedOutputStream::WriteVarint32ToArray( value.GetCachedSize(), target); return value.SerializeWithCachedSizesToArray(target); } // See comment on ReadGroupNoVirtual to understand the need for this template // parameter name. template inline uint8* WireFormatLite::WriteGroupNoVirtualToArray( int field_number, const MessageType_WorkAroundCppLookupDefect& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target); target = value.MessageType_WorkAroundCppLookupDefect ::SerializeWithCachedSizesToArray(target); return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target); } template inline uint8* WireFormatLite::WriteMessageNoVirtualToArray( int field_number, const MessageType_WorkAroundCppLookupDefect& value, uint8* target) { target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target); target = io::CodedOutputStream::WriteVarint32ToArray( value.MessageType_WorkAroundCppLookupDefect::GetCachedSize(), target); return value.MessageType_WorkAroundCppLookupDefect ::SerializeWithCachedSizesToArray(target); } // =================================================================== inline int WireFormatLite::Int32Size(int32 value) { return io::CodedOutputStream::VarintSize32SignExtended(value); } inline int WireFormatLite::Int64Size(int64 value) { return io::CodedOutputStream::VarintSize64(static_cast(value)); } inline int WireFormatLite::UInt32Size(uint32 value) { return io::CodedOutputStream::VarintSize32(value); } inline int WireFormatLite::UInt64Size(uint64 value) { return io::CodedOutputStream::VarintSize64(value); } inline int WireFormatLite::SInt32Size(int32 value) { return io::CodedOutputStream::VarintSize32(ZigZagEncode32(value)); } inline int WireFormatLite::SInt64Size(int64 value) { return io::CodedOutputStream::VarintSize64(ZigZagEncode64(value)); } inline int WireFormatLite::EnumSize(int value) { return io::CodedOutputStream::VarintSize32SignExtended(value); } inline int WireFormatLite::StringSize(const string& value) { return io::CodedOutputStream::VarintSize32(value.size()) + value.size(); } inline int WireFormatLite::BytesSize(const string& value) { return io::CodedOutputStream::VarintSize32(value.size()) + value.size(); } inline int WireFormatLite::GroupSize(const MessageLite& value) { return value.ByteSize(); } inline int WireFormatLite::MessageSize(const MessageLite& value) { return LengthDelimitedSize(value.ByteSize()); } // See comment on ReadGroupNoVirtual to understand the need for this template // parameter name. template inline int WireFormatLite::GroupSizeNoVirtual( const MessageType_WorkAroundCppLookupDefect& value) { return value.MessageType_WorkAroundCppLookupDefect::ByteSize(); } template inline int WireFormatLite::MessageSizeNoVirtual( const MessageType_WorkAroundCppLookupDefect& value) { return LengthDelimitedSize( value.MessageType_WorkAroundCppLookupDefect::ByteSize()); } inline int WireFormatLite::LengthDelimitedSize(int length) { return io::CodedOutputStream::VarintSize32(length) + length; } } // namespace internal } // namespace protobuf } // namespace google #endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_INL_H__