acl/include/google/protobuf/extension_set.h

1231 lines
62 KiB
C++

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.
#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
#include <vector>
#include <map>
#include <utility>
#include <string>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/repeated_field.h>
namespace google {
namespace protobuf {
class Descriptor; // descriptor.h
class FieldDescriptor; // descriptor.h
class DescriptorPool; // descriptor.h
class MessageLite; // message_lite.h
class Message; // message.h
class MessageFactory; // message.h
class UnknownFieldSet; // unknown_field_set.h
namespace io {
class CodedInputStream; // coded_stream.h
class CodedOutputStream; // coded_stream.h
}
namespace internal {
class FieldSkipper; // wire_format_lite.h
}
}
namespace protobuf {
namespace internal {
// Used to store values of type WireFormatLite::FieldType without having to
// #include wire_format_lite.h. Also, ensures that we use only one byte to
// store these values, which is important to keep the layout of
// ExtensionSet::Extension small.
typedef uint8 FieldType;
// A function which, given an integer value, returns true if the number
// matches one of the defined values for the corresponding enum type. This
// is used with RegisterEnumExtension, below.
typedef bool EnumValidityFunc(int number);
// Version of the above which takes an argument. This is needed to deal with
// extensions that are not compiled in.
typedef bool EnumValidityFuncWithArg(const void* arg, int number);
// Information about a registered extension.
struct ExtensionInfo {
inline ExtensionInfo() {}
inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked)
: type(type_param), is_repeated(isrepeated), is_packed(ispacked),
descriptor(NULL) {}
FieldType type;
bool is_repeated;
bool is_packed;
struct EnumValidityCheck {
EnumValidityFuncWithArg* func;
const void* arg;
};
union {
EnumValidityCheck enum_validity_check;
const MessageLite* message_prototype;
};
// The descriptor for this extension, if one exists and is known. May be
// NULL. Must not be NULL if the descriptor for the extension does not
// live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor;
};
// Abstract interface for an object which looks up extension definitions. Used
// when parsing.
class LIBPROTOBUF_EXPORT ExtensionFinder {
public:
virtual ~ExtensionFinder();
// Find the extension with the given containing type and number.
virtual bool Find(int number, ExtensionInfo* output) = 0;
};
// Implementation of ExtensionFinder which finds extensions defined in .proto
// files which have been compiled into the binary.
class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
public:
GeneratedExtensionFinder(const MessageLite* containing_type)
: containing_type_(containing_type) {}
virtual ~GeneratedExtensionFinder() {}
// Returns true and fills in *output if found, otherwise returns false.
virtual bool Find(int number, ExtensionInfo* output);
private:
const MessageLite* containing_type_;
};
// A FieldSkipper used for parsing MessageSet.
class MessageSetFieldSkipper;
// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
// finding extensions from a DescriptorPool.
// This is an internal helper class intended for use within the protocol buffer
// library and generated classes. Clients should not use it directly. Instead,
// use the generated accessors such as GetExtension() of the class being
// extended.
//
// This class manages extensions for a protocol message object. The
// message's HasExtension(), GetExtension(), MutableExtension(), and
// ClearExtension() methods are just thin wrappers around the embedded
// ExtensionSet. When parsing, if a tag number is encountered which is
// inside one of the message type's extension ranges, the tag is passed
// off to the ExtensionSet for parsing. Etc.
class LIBPROTOBUF_EXPORT ExtensionSet {
public:
ExtensionSet();
~ExtensionSet();
// These are called at startup by protocol-compiler-generated code to
// register known extensions. The registrations are used by ParseField()
// to look up extensions for parsed field numbers. Note that dynamic parsing
// does not use ParseField(); only protocol-compiler-generated parsing
// methods do.
static void RegisterExtension(const MessageLite* containing_type,
int number, FieldType type,
bool is_repeated, bool is_packed);
static void RegisterEnumExtension(const MessageLite* containing_type,
int number, FieldType type,
bool is_repeated, bool is_packed,
EnumValidityFunc* is_valid);
static void RegisterMessageExtension(const MessageLite* containing_type,
int number, FieldType type,
bool is_repeated, bool is_packed,
const MessageLite* prototype);
// =================================================================
// Add all fields which are currently present to the given vector. This
// is useful to implement Reflection::ListFields().
void AppendToList(const Descriptor* containing_type,
const DescriptorPool* pool,
vector<const FieldDescriptor*>* output) const;
// =================================================================
// Accessors
//
// Generated message classes include type-safe templated wrappers around
// these methods. Generally you should use those rather than call these
// directly, unless you are doing low-level memory management.
//
// When calling any of these accessors, the extension number requested
// MUST exist in the DescriptorPool provided to the constructor. Otheriwse,
// the method will fail an assert. Normally, though, you would not call
// these directly; you would either call the generated accessors of your
// message class (e.g. GetExtension()) or you would call the accessors
// of the reflection interface. In both cases, it is impossible to
// trigger this assert failure: the generated accessors only accept
// linked-in extension types as parameters, while the Reflection interface
// requires you to provide the FieldDescriptor describing the extension.
//
// When calling any of these accessors, a protocol-compiler-generated
// implementation of the extension corresponding to the number MUST
// be linked in, and the FieldDescriptor used to refer to it MUST be
// the one generated by that linked-in code. Otherwise, the method will
// die on an assert failure. The message objects returned by the message
// accessors are guaranteed to be of the correct linked-in type.
//
// These methods pretty much match Reflection except that:
// - They're not virtual.
// - They identify fields by number rather than FieldDescriptors.
// - They identify enum values using integers rather than descriptors.
// - Strings provide Mutable() in addition to Set() accessors.
bool Has(int number) const;
int ExtensionSize(int number) const; // Size of a repeated extension.
int NumExtensions() const; // The number of extensions
FieldType ExtensionType(int number) const;
void ClearExtension(int number);
// singular fields -------------------------------------------------
int32 GetInt32 (int number, int32 default_value) const;
int64 GetInt64 (int number, int64 default_value) const;
uint32 GetUInt32(int number, uint32 default_value) const;
uint64 GetUInt64(int number, uint64 default_value) const;
float GetFloat (int number, float default_value) const;
double GetDouble(int number, double default_value) const;
bool GetBool (int number, bool default_value) const;
int GetEnum (int number, int default_value) const;
const string & GetString (int number, const string& default_value) const;
const MessageLite& GetMessage(int number,
const MessageLite& default_value) const;
const MessageLite& GetMessage(int number, const Descriptor* message_type,
MessageFactory* factory) const;
// |descriptor| may be NULL so long as it is known that the descriptor for
// the extension lives in the same pool as the descriptor for the containing
// type.
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void SetInt32 (int number, FieldType type, int32 value, desc);
void SetInt64 (int number, FieldType type, int64 value, desc);
void SetUInt32(int number, FieldType type, uint32 value, desc);
void SetUInt64(int number, FieldType type, uint64 value, desc);
void SetFloat (int number, FieldType type, float value, desc);
void SetDouble(int number, FieldType type, double value, desc);
void SetBool (int number, FieldType type, bool value, desc);
void SetEnum (int number, FieldType type, int value, desc);
void SetString(int number, FieldType type, const string& value, desc);
string * MutableString (int number, FieldType type, desc);
MessageLite* MutableMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
MessageFactory* factory);
// Adds the given message to the ExtensionSet, taking ownership of the
// message object. Existing message with the same number will be deleted.
// If "message" is NULL, this is equivalent to "ClearExtension(number)".
void SetAllocatedMessage(int number, FieldType type,
const FieldDescriptor* descriptor,
MessageLite* message);
MessageLite* ReleaseMessage(int number, const MessageLite& prototype);
MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
#undef desc
// repeated fields -------------------------------------------------
// Fetches a RepeatedField extension by number; returns |default_value|
// if no such extension exists. User should not touch this directly; it is
// used by the GetRepeatedExtension() method.
const void* GetRawRepeatedField(int number, const void* default_value) const;
// Fetches a mutable version of a RepeatedField extension by number,
// instantiating one if none exists. Similar to above, user should not use
// this directly; it underlies MutableRepeatedExtension().
void* MutableRawRepeatedField(int number, FieldType field_type,
bool packed, const FieldDescriptor* desc);
// This is an overload of MutableRawRepeatedField to maintain compatibility
// with old code using a previous API. This version of
// MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
// (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
void* MutableRawRepeatedField(int number);
int32 GetRepeatedInt32 (int number, int index) const;
int64 GetRepeatedInt64 (int number, int index) const;
uint32 GetRepeatedUInt32(int number, int index) const;
uint64 GetRepeatedUInt64(int number, int index) const;
float GetRepeatedFloat (int number, int index) const;
double GetRepeatedDouble(int number, int index) const;
bool GetRepeatedBool (int number, int index) const;
int GetRepeatedEnum (int number, int index) const;
const string & GetRepeatedString (int number, int index) const;
const MessageLite& GetRepeatedMessage(int number, int index) const;
void SetRepeatedInt32 (int number, int index, int32 value);
void SetRepeatedInt64 (int number, int index, int64 value);
void SetRepeatedUInt32(int number, int index, uint32 value);
void SetRepeatedUInt64(int number, int index, uint64 value);
void SetRepeatedFloat (int number, int index, float value);
void SetRepeatedDouble(int number, int index, double value);
void SetRepeatedBool (int number, int index, bool value);
void SetRepeatedEnum (int number, int index, int value);
void SetRepeatedString(int number, int index, const string& value);
string * MutableRepeatedString (int number, int index);
MessageLite* MutableRepeatedMessage(int number, int index);
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void AddInt32 (int number, FieldType type, bool packed, int32 value, desc);
void AddInt64 (int number, FieldType type, bool packed, int64 value, desc);
void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
void AddFloat (int number, FieldType type, bool packed, float value, desc);
void AddDouble(int number, FieldType type, bool packed, double value, desc);
void AddBool (int number, FieldType type, bool packed, bool value, desc);
void AddEnum (int number, FieldType type, bool packed, int value, desc);
void AddString(int number, FieldType type, const string& value, desc);
string * AddString (int number, FieldType type, desc);
MessageLite* AddMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* AddMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
#undef desc
void RemoveLast(int number);
MessageLite* ReleaseLast(int number);
void SwapElements(int number, int index1, int index2);
// -----------------------------------------------------------------
// TODO(kenton): Hardcore memory management accessors
// =================================================================
// convenience methods for implementing methods of Message
//
// These could all be implemented in terms of the other methods of this
// class, but providing them here helps keep the generated code size down.
void Clear();
void MergeFrom(const ExtensionSet& other);
void Swap(ExtensionSet* other);
void SwapExtension(ExtensionSet* other, int number);
bool IsInitialized() const;
// Parses a single extension from the input. The input should start out
// positioned immediately after the tag.
bool ParseField(uint32 tag, io::CodedInputStream* input,
ExtensionFinder* extension_finder,
FieldSkipper* field_skipper);
// Specific versions for lite or full messages (constructs the appropriate
// FieldSkipper automatically). |containing_type| is the default
// instance for the containing message; it is used only to look up the
// extension by number. See RegisterExtension(), above. Unlike the other
// methods of ExtensionSet, this only works for generated message types --
// it looks up extensions registered using RegisterExtension().
bool ParseField(uint32 tag, io::CodedInputStream* input,
const MessageLite* containing_type);
bool ParseField(uint32 tag, io::CodedInputStream* input,
const Message* containing_type,
UnknownFieldSet* unknown_fields);
bool ParseField(uint32 tag, io::CodedInputStream* input,
const MessageLite* containing_type,
io::CodedOutputStream* unknown_fields);
// Parse an entire message in MessageSet format. Such messages have no
// fields, only extensions.
bool ParseMessageSet(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Specific versions for lite or full messages (constructs the appropriate
// FieldSkipper automatically).
bool ParseMessageSet(io::CodedInputStream* input,
const MessageLite* containing_type);
bool ParseMessageSet(io::CodedInputStream* input,
const Message* containing_type,
UnknownFieldSet* unknown_fields);
// Write all extension fields with field numbers in the range
// [start_field_number, end_field_number)
// to the output stream, using the cached sizes computed when ByteSize() was
// last called. Note that the range bounds are inclusive-exclusive.
void SerializeWithCachedSizes(int start_field_number,
int end_field_number,
io::CodedOutputStream* output) const;
// Same as SerializeWithCachedSizes, but without any bounds checking.
// The caller must ensure that target has sufficient capacity for the
// serialized extensions.
//
// Returns a pointer past the last written byte.
uint8* SerializeWithCachedSizesToArray(int start_field_number,
int end_field_number,
uint8* target) const;
// Like above but serializes in MessageSet format.
void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const;
uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
// Returns the total serialized size of all the extensions.
int ByteSize() const;
// Like ByteSize() but uses MessageSet format.
int MessageSetByteSize() const;
// Returns (an estimate of) the total number of bytes used for storing the
// extensions in memory, excluding sizeof(*this). If the ExtensionSet is
// for a lite message (and thus possibly contains lite messages), the results
// are undefined (might work, might crash, might corrupt data, might not even
// be linked in). It's up to the protocol compiler to avoid calling this on
// such ExtensionSets (easy enough since lite messages don't implement
// SpaceUsed()).
int SpaceUsedExcludingSelf() const;
private:
// Interface of a lazily parsed singular message extension.
class LIBPROTOBUF_EXPORT LazyMessageExtension {
public:
LazyMessageExtension() {}
virtual ~LazyMessageExtension() {}
virtual LazyMessageExtension* New() const = 0;
virtual const MessageLite& GetMessage(
const MessageLite& prototype) const = 0;
virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0;
virtual void SetAllocatedMessage(MessageLite *message) = 0;
virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0;
virtual bool IsInitialized() const = 0;
virtual int ByteSize() const = 0;
virtual int SpaceUsed() const = 0;
virtual void MergeFrom(const LazyMessageExtension& other) = 0;
virtual void Clear() = 0;
virtual bool ReadMessage(const MessageLite& prototype,
io::CodedInputStream* input) = 0;
virtual void WriteMessage(int number,
io::CodedOutputStream* output) const = 0;
virtual uint8* WriteMessageToArray(int number, uint8* target) const = 0;
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
};
struct Extension {
// The order of these fields packs Extension into 24 bytes when using 8
// byte alignment. Consider this when adding or removing fields here.
union {
int32 int32_value;
int64 int64_value;
uint32 uint32_value;
uint64 uint64_value;
float float_value;
double double_value;
bool bool_value;
int enum_value;
string* string_value;
MessageLite* message_value;
LazyMessageExtension* lazymessage_value;
RepeatedField <int32 >* repeated_int32_value;
RepeatedField <int64 >* repeated_int64_value;
RepeatedField <uint32 >* repeated_uint32_value;
RepeatedField <uint64 >* repeated_uint64_value;
RepeatedField <float >* repeated_float_value;
RepeatedField <double >* repeated_double_value;
RepeatedField <bool >* repeated_bool_value;
RepeatedField <int >* repeated_enum_value;
RepeatedPtrField<string >* repeated_string_value;
RepeatedPtrField<MessageLite>* repeated_message_value;
};
FieldType type;
bool is_repeated;
// For singular types, indicates if the extension is "cleared". This
// happens when an extension is set and then later cleared by the caller.
// We want to keep the Extension object around for reuse, so instead of
// removing it from the map, we just set is_cleared = true. This has no
// meaning for repeated types; for those, the size of the RepeatedField
// simply becomes zero when cleared.
bool is_cleared : 4;
// For singular message types, indicates whether lazy parsing is enabled
// for this extension. This field is only valid when type == TYPE_MESSAGE
// and !is_repeated because we only support lazy parsing for singular
// message types currently. If is_lazy = true, the extension is stored in
// lazymessage_value. Otherwise, the extension will be message_value.
bool is_lazy : 4;
// For repeated types, this indicates if the [packed=true] option is set.
bool is_packed;
// For packed fields, the size of the packed data is recorded here when
// ByteSize() is called then used during serialization.
// TODO(kenton): Use atomic<int> when C++ supports it.
mutable int cached_size;
// The descriptor for this extension, if one exists and is known. May be
// NULL. Must not be NULL if the descriptor for the extension does not
// live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor;
// Some helper methods for operations on a single Extension.
void SerializeFieldWithCachedSizes(
int number,
io::CodedOutputStream* output) const;
uint8* SerializeFieldWithCachedSizesToArray(
int number,
uint8* target) const;
void SerializeMessageSetItemWithCachedSizes(
int number,
io::CodedOutputStream* output) const;
uint8* SerializeMessageSetItemWithCachedSizesToArray(
int number,
uint8* target) const;
int ByteSize(int number) const;
int MessageSetItemByteSize(int number) const;
void Clear();
int GetSize() const;
void Free();
int SpaceUsedExcludingSelf() const;
};
// Returns true and fills field_number and extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder,
int* field_number, ExtensionInfo* extension,
bool* was_packed_on_wire);
// Returns true and fills extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
ExtensionFinder* extension_finder,
ExtensionInfo* extension,
bool* was_packed_on_wire);
// Parses a single extension from the input. The input should start out
// positioned immediately after the wire tag. This method is called in
// ParseField() after field number and was_packed_on_wire is extracted from
// the wire tag and ExtensionInfo is found by the field number.
bool ParseFieldWithExtensionInfo(int field_number,
bool was_packed_on_wire,
const ExtensionInfo& extension,
io::CodedInputStream* input,
FieldSkipper* field_skipper);
// Like ParseField(), but this method may parse singular message extensions
// lazily depending on the value of FLAGS_eagerly_parse_message_sets.
bool ParseFieldMaybeLazily(int wire_type, int field_number,
io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Gets the extension with the given number, creating it if it does not
// already exist. Returns true if the extension did not already exist.
bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
Extension** result);
// Parse a single MessageSet item -- called just after the item group start
// tag has been read.
bool ParseMessageSetItem(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
// friendship should automatically extend to ExtensionSet::Extension, but
// unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
// correctly. So, we must provide helpers for calling methods of that
// class.
// Defined in extension_set_heavy.cc.
static inline int RepeatedMessage_SpaceUsedExcludingSelf(
RepeatedPtrFieldBase* field);
// The Extension struct is small enough to be passed by value, so we use it
// directly as the value type in the map rather than use pointers. We use
// a map rather than hash_map here because we expect most ExtensionSets will
// only contain a small number of extensions whereas hash_map is optimized
// for 100 elements or more. Also, we want AppendToList() to order fields
// by field number.
std::map<int, Extension> extensions_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
};
// These are just for convenience...
inline void ExtensionSet::SetString(int number, FieldType type,
const string& value,
const FieldDescriptor* descriptor) {
MutableString(number, type, descriptor)->assign(value);
}
inline void ExtensionSet::SetRepeatedString(int number, int index,
const string& value) {
MutableRepeatedString(number, index)->assign(value);
}
inline void ExtensionSet::AddString(int number, FieldType type,
const string& value,
const FieldDescriptor* descriptor) {
AddString(number, type, descriptor)->assign(value);
}
// ===================================================================
// Glue for generated extension accessors
// -------------------------------------------------------------------
// Template magic
// First we have a set of classes representing "type traits" for different
// field types. A type traits class knows how to implement basic accessors
// for extensions of a particular type given an ExtensionSet. The signature
// for a type traits class looks like this:
//
// class TypeTraits {
// public:
// typedef ? ConstType;
// typedef ? MutableType;
// // TypeTraits for singular fields and repeated fields will define the
// // symbol "Singular" or "Repeated" respectively. These two symbols will
// // be used in extension accessors to distinguish between singular
// // extensions and repeated extensions. If the TypeTraits for the passed
// // in extension doesn't have the expected symbol defined, it means the
// // user is passing a repeated extension to a singular accessor, or the
// // opposite. In that case the C++ compiler will generate an error
// // message "no matching member function" to inform the user.
// typedef ? Singular
// typedef ? Repeated
//
// static inline ConstType Get(int number, const ExtensionSet& set);
// static inline void Set(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, ExtensionSet* set);
//
// // Variants for repeated fields.
// static inline ConstType Get(int number, const ExtensionSet& set,
// int index);
// static inline void Set(int number, int index,
// ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, int index,
// ExtensionSet* set);
// static inline void Add(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Add(int number, ExtensionSet* set);
// };
//
// Not all of these methods make sense for all field types. For example, the
// "Mutable" methods only make sense for strings and messages, and the
// repeated methods only make sense for repeated types. So, each type
// traits class implements only the set of methods from this signature that it
// actually supports. This will cause a compiler error if the user tries to
// access an extension using a method that doesn't make sense for its type.
// For example, if "foo" is an extension of type "optional int32", then if you
// try to write code like:
// my_message.MutableExtension(foo)
// you will get a compile error because PrimitiveTypeTraits<int32> does not
// have a "Mutable()" method.
// -------------------------------------------------------------------
// PrimitiveTypeTraits
// Since the ExtensionSet has different methods for each primitive type,
// we must explicitly define the methods of the type traits class for each
// known type.
template <typename Type>
class PrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef PrimitiveTypeTraits<Type> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value);
static inline void Set(int number, FieldType field_type,
ConstType value, ExtensionSet* set);
};
template <typename Type>
class RepeatedPrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
typedef RepeatedField<Type> RepeatedFieldType;
static inline Type Get(int number, const ExtensionSet& set, int index);
static inline void Set(int number, int index, Type value, ExtensionSet* set);
static inline void Add(int number, FieldType field_type,
bool is_packed, Type value, ExtensionSet* set);
static inline const RepeatedField<ConstType>&
GetRepeated(int number, const ExtensionSet& set);
static inline RepeatedField<Type>*
MutableRepeated(int number, FieldType field_type,
bool is_packed, ExtensionSet* set);
static const RepeatedFieldType* GetDefaultRepeatedField();
};
// Declared here so that this can be friended below.
void InitializeDefaultRepeatedFields();
class LIBPROTOBUF_EXPORT RepeatedPrimitiveGenericTypeTraits {
private:
template<typename Type> friend class RepeatedPrimitiveTypeTraits;
friend void InitializeDefaultRepeatedFields();
static const RepeatedField<int32>* default_repeated_field_int32_;
static const RepeatedField<int64>* default_repeated_field_int64_;
static const RepeatedField<uint32>* default_repeated_field_uint32_;
static const RepeatedField<uint64>* default_repeated_field_uint64_;
static const RepeatedField<double>* default_repeated_field_double_;
static const RepeatedField<float>* default_repeated_field_float_;
static const RepeatedField<bool>* default_repeated_field_bool_;
};
#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, TYPE default_value) { \
return set.Get##METHOD(number, default_value); \
} \
template<> inline void PrimitiveTypeTraits<TYPE>::Set( \
int number, FieldType field_type, TYPE value, ExtensionSet* set) { \
set->Set##METHOD(number, field_type, value, NULL); \
} \
\
template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, int index) { \
return set.GetRepeated##METHOD(number, index); \
} \
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
int number, int index, TYPE value, ExtensionSet* set) { \
set->SetRepeated##METHOD(number, index, value); \
} \
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
int number, FieldType field_type, bool is_packed, \
TYPE value, ExtensionSet* set) { \
set->Add##METHOD(number, field_type, is_packed, value, NULL); \
} \
template<> inline const RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
return RepeatedPrimitiveGenericTypeTraits:: \
default_repeated_field_##TYPE##_; \
} \
template<> inline const RepeatedField<TYPE>& \
RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
const ExtensionSet& set) { \
return *reinterpret_cast<const RepeatedField<TYPE>*>( \
set.GetRawRepeatedField( \
number, GetDefaultRepeatedField())); \
} \
template<> inline RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated(int number, \
FieldType field_type, \
bool is_packed, \
ExtensionSet* set) { \
return reinterpret_cast<RepeatedField<TYPE>*>( \
set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \
}
PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32, Int32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64, Int64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( float, Float)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( bool, Bool)
#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
// -------------------------------------------------------------------
// StringTypeTraits
// Strings support both Set() and Mutable().
class LIBPROTOBUF_EXPORT StringTypeTraits {
public:
typedef const string& ConstType;
typedef string* MutableType;
typedef StringTypeTraits Singular;
static inline const string& Get(int number, const ExtensionSet& set,
ConstType default_value) {
return set.GetString(number, default_value);
}
static inline void Set(int number, FieldType field_type,
const string& value, ExtensionSet* set) {
set->SetString(number, field_type, value, NULL);
}
static inline string* Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return set->MutableString(number, field_type, NULL);
}
};
class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits {
public:
typedef const string& ConstType;
typedef string* MutableType;
typedef RepeatedStringTypeTraits Repeated;
typedef RepeatedPtrField<string> RepeatedFieldType;
static inline const string& Get(int number, const ExtensionSet& set,
int index) {
return set.GetRepeatedString(number, index);
}
static inline void Set(int number, int index,
const string& value, ExtensionSet* set) {
set->SetRepeatedString(number, index, value);
}
static inline string* Mutable(int number, int index, ExtensionSet* set) {
return set->MutableRepeatedString(number, index);
}
static inline void Add(int number, FieldType field_type,
bool /*is_packed*/, const string& value,
ExtensionSet* set) {
set->AddString(number, field_type, value, NULL);
}
static inline string* Add(int number, FieldType field_type,
ExtensionSet* set) {
return set->AddString(number, field_type, NULL);
}
static inline const RepeatedPtrField<string>&
GetRepeated(int number, const ExtensionSet& set) {
return *reinterpret_cast<const RepeatedPtrField<string>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<string>*
MutableRepeated(int number, FieldType field_type,
bool is_packed, ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<string>*>(
set->MutableRawRepeatedField(number, field_type,
is_packed, NULL));
}
static const RepeatedFieldType* GetDefaultRepeatedField() {
return default_repeated_field_;
}
private:
friend void InitializeDefaultRepeatedFields();
static const RepeatedFieldType *default_repeated_field_;
};
// -------------------------------------------------------------------
// EnumTypeTraits
// ExtensionSet represents enums using integers internally, so we have to
// static_cast around.
template <typename Type, bool IsValid(int)>
class EnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef EnumTypeTraits<Type, IsValid> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<Type>(set.GetEnum(number, default_value));
}
static inline void Set(int number, FieldType field_type,
ConstType value, ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->SetEnum(number, field_type, value, NULL);
}
};
template <typename Type, bool IsValid(int)>
class RepeatedEnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
typedef RepeatedField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<Type>(set.GetRepeatedEnum(number, index));
}
static inline void Set(int number, int index,
ConstType value, ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->SetRepeatedEnum(number, index, value);
}
static inline void Add(int number, FieldType field_type,
bool is_packed, ConstType value, ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->AddEnum(number, field_type, is_packed, value, NULL);
}
static inline const RepeatedField<Type>& GetRepeated(int number,
const ExtensionSet&
set) {
// Hack: the `Extension` struct stores a RepeatedField<int> for enums.
// RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
// so we need to do some casting magic. See message.h for similar
// contortions for non-extension fields.
return *reinterpret_cast<const RepeatedField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
}
static const RepeatedFieldType* GetDefaultRepeatedField() {
// Hack: as noted above, repeated enum fields are internally stored as a
// RepeatedField<int>. We need to be able to instantiate global static
// objects to return as default (empty) repeated fields on non-existent
// extensions. We would not be able to know a-priori all of the enum types
// (values of |Type|) to instantiate all of these, so we just re-use int32's
// default repeated field object.
return reinterpret_cast<const RepeatedField<Type>*>(
RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField());
}
};
// -------------------------------------------------------------------
// MessageTypeTraits
// ExtensionSet guarantees that when manipulating extensions with message
// types, the implementation used will be the compiled-in class representing
// that type. So, we can static_cast down to the exact type we expect.
template <typename Type>
class MessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
typedef MessageTypeTraits<Type> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<const Type&>(
set.GetMessage(number, default_value));
}
static inline MutableType Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(
set->MutableMessage(number, field_type, Type::default_instance(), NULL));
}
static inline void SetAllocated(int number, FieldType field_type,
MutableType message, ExtensionSet* set) {
set->SetAllocatedMessage(number, field_type, NULL, message);
}
static inline MutableType Release(int number, FieldType /* field_type */,
ExtensionSet* set) {
return static_cast<Type*>(set->ReleaseMessage(
number, Type::default_instance()));
}
};
// forward declaration
class RepeatedMessageGenericTypeTraits;
template <typename Type>
class RepeatedMessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
typedef RepeatedMessageTypeTraits<Type> Repeated;
typedef RepeatedPtrField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
}
static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
}
static inline MutableType Add(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(
set->AddMessage(number, field_type, Type::default_instance(), NULL));
}
static inline const RepeatedPtrField<Type>& GetRepeated(int number,
const ExtensionSet&
set) {
// See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
// casting hack applies here, because a RepeatedPtrField<MessageLite>
// cannot naturally become a RepeatedPtrType<Type> even though Type is
// presumably a message. google::protobuf::Message goes through similar contortions
// with a reinterpret_cast<>.
return *reinterpret_cast<const RepeatedPtrField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
}
static const RepeatedFieldType* GetDefaultRepeatedField();
};
// This class exists only to hold a generic default empty repeated field for all
// message-type repeated field extensions.
class LIBPROTOBUF_EXPORT RepeatedMessageGenericTypeTraits {
public:
typedef RepeatedPtrField< ::google::protobuf::MessageLite*> RepeatedFieldType;
private:
template<typename Type> friend class RepeatedMessageTypeTraits;
friend void InitializeDefaultRepeatedFields();
static const RepeatedFieldType* default_repeated_field_;
};
template<typename Type> inline
const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
return reinterpret_cast<const RepeatedFieldType*>(
RepeatedMessageGenericTypeTraits::default_repeated_field_);
}
// -------------------------------------------------------------------
// ExtensionIdentifier
// This is the type of actual extension objects. E.g. if you have:
// extends Foo with optional int32 bar = 1234;
// then "bar" will be defined in C++ as:
// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234);
//
// Note that we could, in theory, supply the field number as a template
// parameter, and thus make an instance of ExtensionIdentifier have no
// actual contents. However, if we did that, then using at extension
// identifier would not necessarily cause the compiler to output any sort
// of reference to any simple defined in the extension's .pb.o file. Some
// linkers will actually drop object files that are not explicitly referenced,
// but that would be bad because it would cause this extension to not be
// registered at static initialization, and therefore using it would crash.
template <typename ExtendeeType, typename TypeTraitsType,
FieldType field_type, bool is_packed>
class ExtensionIdentifier {
public:
typedef TypeTraitsType TypeTraits;
typedef ExtendeeType Extendee;
ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
: number_(number), default_value_(default_value) {}
inline int number() const { return number_; }
typename TypeTraits::ConstType default_value() const {
return default_value_;
}
private:
const int number_;
typename TypeTraits::ConstType default_value_;
};
// -------------------------------------------------------------------
// Generated accessors
// This macro should be expanded in the context of a generated type which
// has extensions.
//
// We use "_proto_TypeTraits" as a type name below because "TypeTraits"
// causes problems if the class has a nested message or enum type with that
// name and "_TypeTraits" is technically reserved for the C++ library since
// it starts with an underscore followed by a capital letter.
//
// For similar reason, we use "_field_type" and "_is_packed" as parameter names
// below, so that "field_type" and "is_packed" can be used as field names.
#define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \
/* Has, Size, Clear */ \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline bool HasExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
return _extensions_.Has(id.number()); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void ClearExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
_extensions_.ClearExtension(id.number()); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline int ExtensionSize( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
return _extensions_.ExtensionSize(id.number()); \
} \
\
/* Singular accessors */ \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
return _proto_TypeTraits::Get(id.number(), _extensions_, \
id.default_value()); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
return _proto_TypeTraits::Mutable(id.number(), _field_type, \
&_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void SetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
typename _proto_TypeTraits::Singular::ConstType value) { \
_proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void SetAllocatedExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
typename _proto_TypeTraits::Singular::MutableType value) { \
_proto_TypeTraits::SetAllocated(id.number(), _field_type, \
value, &_extensions_); \
} \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
return _proto_TypeTraits::Release(id.number(), _field_type, \
&_extensions_); \
} \
\
/* Repeated accessors */ \
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
int index) const { \
return _proto_TypeTraits::Get(id.number(), _extensions_, index); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
int index) { \
return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void SetExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
int index, typename _proto_TypeTraits::Repeated::ConstType value) { \
_proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline void AddExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
typename _proto_TypeTraits::Repeated::ConstType value) { \
_proto_TypeTraits::Add(id.number(), _field_type, _is_packed, \
value, &_extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \
GetRepeatedExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, \
_is_packed>& id) const { \
return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \
} \
\
template <typename _proto_TypeTraits, \
::google::protobuf::internal::FieldType _field_type, \
bool _is_packed> \
inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \
MutableRepeatedExtension( \
const ::google::protobuf::internal::ExtensionIdentifier< \
CLASSNAME, _proto_TypeTraits, _field_type, \
_is_packed>& id) { \
return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \
_is_packed, &_extensions_); \
}
} // namespace internal
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__