acl/lib_fiber/c/channel.c

388 lines
6.3 KiB
C

/* Copyright (c) 2005 Russ Cox, MIT; see COPYRIGHT */
#include "stdafx.h"
#include "fiber.h"
CHANNEL* channel_create(int elemsize, int bufsize)
{
CHANNEL *c;
c = (CHANNEL *) acl_mycalloc(1, sizeof(*c) + bufsize * elemsize);
c->elemsize = elemsize;
c->bufsize = bufsize;
c->nbuf = 0;
c->buf = (unsigned char *)(c + 1);
return c;
}
/* bug - work out races */
void channel_free(CHANNEL *c)
{
if(c != NULL) {
acl_myfree(c->name);
acl_myfree(c->arecv.a);
acl_myfree(c->asend.a);
acl_myfree(c);
}
}
static void array_add(FIBER_ALT_ARRAY *a, FIBER_ALT *alt)
{
if (a->n == a->m) {
a->m += 16;
a->a = acl_myrealloc(a->a, a->m * sizeof(a->a[0]));
}
a->a[a->n++] = alt;
}
static void array_del(FIBER_ALT_ARRAY *a, int i)
{
--a->n;
a->a[i] = a->a[a->n];
}
/*
* doesn't really work for things other than CHANSND and CHANRCV
* but is only used as arg to channel_array, which can handle it
*/
#define otherop(op) (CHANSND + CHANRCV - (op))
static FIBER_ALT_ARRAY* channel_array(CHANNEL *c, unsigned int op)
{
switch (op) {
case CHANSND:
return &c->asend;
case CHANRCV:
return &c->arecv;
default:
return NULL;
}
}
static int alt_can_exec(FIBER_ALT *a)
{
FIBER_ALT_ARRAY *ar;
CHANNEL *c;
if (a->op == CHANNOP)
return 0;
c = a->c;
if (c->bufsize == 0) {
ar = channel_array(c, otherop(a->op));
return ar && ar->n;
}
switch (a->op) {
default:
return 0;
case CHANSND:
return c->nbuf < c->bufsize;
case CHANRCV:
return c->nbuf > 0;
}
}
static void alt_queue(FIBER_ALT *a)
{
FIBER_ALT_ARRAY *ar;
ar = channel_array(a->c, a->op);
array_add(ar, a);
}
static void alt_dequeue(FIBER_ALT *a)
{
FIBER_ALT_ARRAY *ar;
unsigned int i;
ar = channel_array(a->c, a->op);
if (ar == NULL){
fprintf(stderr, "bad use of altdequeue op=%d\n", a->op);
abort();
}
for (i = 0; i < ar->n; i++) {
if (ar->a[i] == a) {
array_del(ar, i);
return;
}
}
fprintf(stderr, "cannot find self in altdq\n");
abort();
}
static void alt_all_dequeue(FIBER_ALT *a)
{
int i;
for ( i = 0; a[i].op != CHANEND && a[i].op != CHANNOBLK; i++) {
if (a[i].op != CHANNOP)
alt_dequeue(&a[i]);
}
}
static void amove(void *dst, void *src, unsigned int n)
{
if (dst) {
if (src == NULL)
memset(dst, 0, n);
else
memmove(dst, src, n);
}
}
/*
* Actually move the data around. There are up to three
* players: the sender, the receiver, and the channel itself.
* If the channel is unbuffered or the buffer is empty,
* data goes from sender to receiver. If the channel is full,
* the receiver removes some from the channel and the sender
* gets to put some in.
*/
static void alt_copy(FIBER_ALT *s, FIBER_ALT *r)
{
FIBER_ALT *t;
CHANNEL *c;
unsigned char *cp;
/*
* Work out who is sender and who is receiver
*/
if (s == NULL && r == NULL)
return;
assert(s != NULL);
c = s->c;
if (s->op == CHANRCV) {
t = s;
s = r;
r = t;
}
assert(s==NULL || s->op == CHANSND);
assert(r==NULL || r->op == CHANRCV);
/*
* CHANNEL is empty (or unbuffered) - copy directly.
*/
if (s && r && c->nbuf == 0) {
amove(r->v, s->v, c->elemsize);
return;
}
/*
* Otherwise it's always okay to receive and then send.
*/
if (r) {
cp = c->buf + c->off*c->elemsize;
amove(r->v, cp, c->elemsize);
--c->nbuf;
if (++c->off == c->bufsize)
c->off = 0;
}
if (s) {
cp = c->buf + (c->off + c->nbuf) % c->bufsize * c->elemsize;
amove(cp, s->v, c->elemsize);
++c->nbuf;
}
}
static void alt_exec(FIBER_ALT *a)
{
FIBER_ALT_ARRAY *ar;
FIBER_ALT *other;
CHANNEL *c;
int i;
c = a->c;
ar = channel_array(c, otherop(a->op));
if (ar && ar->n) {
i = rand() % ar->n;
printf("...i: %d, n: %d\r\n", i, ar->n);
other = ar->a[i];
alt_copy(a, other);
alt_all_dequeue(other->xalt);
other->xalt[0].xalt = other;
fiber_ready(other->fiber);
} else
alt_copy(a, NULL);
}
#define dbgalt 0
static int channel_alt(FIBER_ALT *a)
{
int i, j, ncan, n, canblock;
CHANNEL *c;
FIBER *t;
for (i = 0; a[i].op != CHANEND && a[i].op != CHANNOBLK; i++) {}
n = i;
canblock = a[i].op == CHANEND;
t = fiber_running();
for (i = 0; i < n; i++) {
a[i].fiber = t;
a[i].xalt = a;
}
if (dbgalt)
printf("alt ");
ncan = 0;
for (i = 0; i < n; i++) {
c = a[i].c;
if (dbgalt)
printf(" %c:", "esrnb"[a[i].op]);
if (dbgalt) {
if (c->name)
printf("%s", c->name);
else
printf("%p", c);
}
if (alt_can_exec(&a[i])) {
if (dbgalt)
printf("*");
ncan++;
}
}
if (ncan) {
j = rand() % ncan;
for (i = 0; i < n; i++) {
if (!alt_can_exec(&a[i]))
continue;
if (j-- > 0)
continue;
if (dbgalt) {
c = a[i].c;
printf(" => %c:", "esrnb"[a[i].op]);
if(c->name)
printf("%s", c->name);
else
printf("%p", c);
printf("\n");
}
alt_exec(&a[i]);
return i;
}
}
if (dbgalt)
printf("\n");
if (!canblock)
return -1;
for (i = 0; i < n; i++) {
if (a[i].op != CHANNOP)
alt_queue(&a[i]);
}
fiber_switch();
/*
* the guy who ran the op took care of dequeueing us
* and then set a[0].alt to the one that was executed.
*/
return a[0].xalt - a;
}
static int channel_op(CHANNEL *c, int op, void *p, int canblock)
{
FIBER_ALT a[2];
a[0].c = c;
a[0].op = op;
a[0].v = p;
a[1].op = canblock ? CHANEND : CHANNOBLK;
if (channel_alt(a) < 0)
return -1;
return 1;
}
int channel_send(CHANNEL *c, void *v)
{
return channel_op(c, CHANSND, v, 1);
}
int channel_send_nb(CHANNEL *c, void *v)
{
return channel_op(c, CHANSND, v, 0);
}
int channel_recv(CHANNEL *c, void *v)
{
return channel_op(c, CHANRCV, v, 1);
}
int channel_recv_nb(CHANNEL *c, void *v)
{
return channel_op(c, CHANRCV, v, 0);
}
int channel_sendp(CHANNEL *c, void *v)
{
return channel_op(c, CHANSND, (void *) &v, 1);
}
void *channel_recvp(CHANNEL *c)
{
void *v;
channel_op(c, CHANRCV, (void *) &v, 1);
return v;
}
int channel_sendp_nb(CHANNEL *c, void *v)
{
return channel_op(c, CHANSND, (void *) &v, 0);
}
void *channel_recvp_nb(CHANNEL *c)
{
void *v;
channel_op(c, CHANRCV, (void *) &v, 0);
return v;
}
int channel_sendul(CHANNEL *c, ulong val)
{
return channel_op(c, CHANSND, &val, 1);
}
unsigned long channel_recvul(CHANNEL *c)
{
unsigned long val;
channel_op(c, CHANRCV, &val, 1);
return val;
}
int channel_sendul_nb(CHANNEL *c, ulong val)
{
return channel_op(c, CHANSND, &val, 0);
}
unsigned long channel_recvul_nb(CHANNEL *c)
{
unsigned long val;
channel_op(c, CHANRCV, &val, 0);
return val;
}