2024-01-12 16:24:14 +08:00
|
|
|
<h4 align="right"><strong>English</strong> | <a href="./readme_zh.md">简体中文</a></h4>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Agents-Flex is an elegant LLM Application Framework like LangChain with Java.
|
|
|
|
|
2024-01-18 10:04:05 +08:00
|
|
|
## Features
|
|
|
|
|
|
|
|
- LLM Visit
|
|
|
|
- Prompt、Prompt Template Loader
|
|
|
|
- Function Calling Definer, Invoker、Running
|
|
|
|
- Embedding
|
|
|
|
- Vector Storage
|
|
|
|
- Resource Loaders
|
|
|
|
- Text Splitter
|
|
|
|
- LLMs Chain
|
|
|
|
- Agents Chain
|
2024-01-12 16:24:14 +08:00
|
|
|
|
2024-01-16 16:39:10 +08:00
|
|
|
## Simple Chat
|
2024-01-12 16:24:14 +08:00
|
|
|
|
|
|
|
use OpenAi LLM:
|
|
|
|
|
|
|
|
```java
|
|
|
|
public static void main(String[] args) throws InterruptedException {
|
|
|
|
|
|
|
|
OpenAiConfig config = new OpenAiConfig();
|
|
|
|
config.setApiKey("sk-rts5NF6n*******");
|
|
|
|
|
|
|
|
Llm llm = new OpenAiLlm(config);
|
|
|
|
|
|
|
|
Prompt prompt = new SimplePrompt("Please write a story about a little rabbit defeating a big bad wolf");
|
|
|
|
llm.chat(prompt, (llmInstance, message) -> {
|
|
|
|
System.out.println("--->" + message.getContent());
|
|
|
|
});
|
|
|
|
|
|
|
|
Thread.sleep(10000);
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2024-01-12 17:29:21 +08:00
|
|
|
|
|
|
|
use Qwen LLM:
|
|
|
|
|
|
|
|
```java
|
|
|
|
public static void main(String[] args) throws InterruptedException {
|
|
|
|
|
|
|
|
QwenLlmConfig config = new QwenLlmConfig();
|
|
|
|
config.setApiKey("sk-28a6be3236****");
|
|
|
|
config.setModel("qwen-turbo");
|
|
|
|
|
|
|
|
Llm llm = new QwenLlm(config);
|
|
|
|
|
|
|
|
Prompt prompt = new SimplePrompt("Please write a story about a little rabbit defeating a big bad wolf");
|
|
|
|
llm.chat(prompt, (llmInstance, message) -> {
|
|
|
|
System.out.println("--->" + message.getContent());
|
|
|
|
});
|
|
|
|
|
|
|
|
Thread.sleep(10000);
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
|
2024-01-12 16:24:14 +08:00
|
|
|
use SparkAi LLM:
|
|
|
|
|
|
|
|
```java
|
|
|
|
public static void main(String[] args) throws InterruptedException {
|
|
|
|
|
|
|
|
SparkLlmConfig config = new SparkLlmConfig();
|
|
|
|
config.setAppId("****");
|
|
|
|
config.setApiKey("****");
|
|
|
|
config.setApiSecret("****");
|
|
|
|
|
|
|
|
Llm llm = new SparkLlm(config);
|
|
|
|
|
|
|
|
Prompt prompt = new SimplePrompt("Please write a story about a little rabbit defeating a big bad wolf");
|
|
|
|
llm.chat(prompt, (llmInstance, message) -> {
|
|
|
|
System.out.println("--->" + message.getContent());
|
|
|
|
});
|
|
|
|
|
|
|
|
Thread.sleep(10000);
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2024-01-16 16:39:10 +08:00
|
|
|
## Chat With Histories
|
|
|
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
public static void main(String[] args) {
|
|
|
|
|
|
|
|
SparkLlmConfig config = new SparkLlmConfig();
|
|
|
|
config.setAppId("****");
|
|
|
|
config.setApiKey("****");
|
|
|
|
config.setApiSecret("****");
|
|
|
|
|
|
|
|
// Create LLM
|
|
|
|
Llm llm = new SparkLlm(config);
|
|
|
|
|
|
|
|
// Create Histories prompt
|
|
|
|
HistoriesPrompt prompt = new HistoriesPrompt();
|
|
|
|
|
|
|
|
System.out.println("ask for something...");
|
|
|
|
Scanner scanner = new Scanner(System.in);
|
|
|
|
|
|
|
|
//wait for user input
|
|
|
|
String userInput = scanner.nextLine();
|
|
|
|
|
|
|
|
while (userInput != null){
|
|
|
|
|
|
|
|
prompt.addMessage(new HumanMessage(userInput));
|
|
|
|
|
|
|
|
//chat with llm
|
|
|
|
llm.chat(prompt, (instance, message) -> {
|
|
|
|
System.out.println(">>>> " + message.getContent());
|
|
|
|
});
|
|
|
|
|
|
|
|
//wait for user input
|
|
|
|
userInput = scanner.nextLine();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
2024-01-19 13:44:56 +08:00
|
|
|
|
|
|
|
## Function Calling
|
|
|
|
|
|
|
|
- step 1: define the function native
|
|
|
|
|
|
|
|
```java
|
|
|
|
public class WeatherUtil {
|
|
|
|
|
|
|
|
@FunctionDef(name = "get_the_weather_info", description = "get the weather info")
|
|
|
|
public static String getWeatherInfo(
|
|
|
|
@FunctionParam(name = "city", description = "the city name") String name
|
|
|
|
) {
|
|
|
|
return "Today it will be dull and overcast in " + name;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
- step 2: invoke the function from LLM
|
|
|
|
|
|
|
|
```java
|
|
|
|
public static void main(String[] args) throws InterruptedException {
|
|
|
|
|
|
|
|
OpenAiLlmConfig config = new OpenAiLlmConfig();
|
|
|
|
config.setApiKey("sk-rts5NF6n*******");
|
|
|
|
|
|
|
|
OpenAiLlm llm = new OpenAiLlm(config);
|
|
|
|
|
|
|
|
Functions<String> functions = Functions.from(WeatherUtil.class, String.class);
|
|
|
|
String result = llm.call(new SimplePrompt("How is the weather like today?"), functions);
|
|
|
|
|
|
|
|
System.out.println(result);
|
|
|
|
// "Today it will be dull and overcast in Beijing";
|
|
|
|
|
|
|
|
Thread.sleep(10000);
|
|
|
|
}
|
|
|
|
```
|