agents-flex/readme.md

169 lines
3.5 KiB
Markdown
Raw Normal View History

2024-07-08 00:40:13 +08:00
<h4 align="right"><strong>English</strong> | <a href="./readme_zh.md">简体中文</a> | <a href="./readme_ja.md">日本語</a></h4>
2024-01-12 16:24:14 +08:00
2024-03-07 17:08:17 +08:00
<p align="center">
2024-03-07 17:28:35 +08:00
<img src="./docs/assets/images/banner.png"/>
2024-03-07 17:08:17 +08:00
</p>
2024-01-12 16:24:14 +08:00
2024-03-07 17:28:35 +08:00
2024-01-25 09:55:42 +08:00
# Agents-Flex is a LLM Application Framework like LangChain base on Java.
2024-01-12 16:24:14 +08:00
2024-01-22 12:31:15 +08:00
---
2024-01-18 10:04:05 +08:00
## Features
- LLM Visit
2024-05-09 10:06:14 +08:00
- Prompt、Prompt Template
2024-01-18 10:04:05 +08:00
- Function Calling Definer, Invoker、Running
2024-01-21 17:42:52 +08:00
- Memory
2024-01-18 10:04:05 +08:00
- Embedding
2024-05-09 10:06:14 +08:00
- Vector Store
2024-01-18 10:04:05 +08:00
- Resource Loaders
2024-01-24 12:30:20 +08:00
- Document
- Splitter
- Loader
- Parser
- PoiParser
- PdfBoxParser
2024-05-09 10:06:14 +08:00
- Agent
- LLM Agent
- Chain
- SequentialChain
- ParallelChain
- LoopChain
- ChainNode
- AgentNode
2024-05-11 17:32:54 +08:00
- EndNode
2024-05-09 10:06:14 +08:00
- RouterNode
2024-05-11 17:32:54 +08:00
- GroovyRouterNode
- QLExpressRouterNode
2024-05-09 10:06:14 +08:00
- LLMRouterNode
2024-01-12 16:24:14 +08:00
2024-01-16 16:39:10 +08:00
## Simple Chat
2024-01-12 16:24:14 +08:00
use OpenAi LLM:
```java
2024-01-26 17:02:38 +08:00
@Test
public void testChat() {
OpenAiLlmConfig config = new OpenAiLlmConfig();
2024-01-12 16:24:14 +08:00
config.setApiKey("sk-rts5NF6n*******");
Llm llm = new OpenAiLlm(config);
2024-01-26 17:02:38 +08:00
String response = llm.chat("what is your name?");
2024-01-12 16:24:14 +08:00
2024-01-26 17:02:38 +08:00
System.out.println(response);
2024-01-12 16:24:14 +08:00
}
```
2024-01-12 17:29:21 +08:00
use Qwen LLM:
```java
2024-01-26 17:02:38 +08:00
@Test
public void testChat() {
2024-01-12 17:29:21 +08:00
QwenLlmConfig config = new QwenLlmConfig();
config.setApiKey("sk-28a6be3236****");
config.setModel("qwen-turbo");
Llm llm = new QwenLlm(config);
2024-01-26 17:02:38 +08:00
String response = llm.chat("what is your name?");
2024-01-12 17:29:21 +08:00
2024-01-26 17:02:38 +08:00
System.out.println(response);
2024-01-12 17:29:21 +08:00
}
```
2024-01-12 16:24:14 +08:00
use SparkAi LLM:
```java
2024-01-26 17:02:38 +08:00
@Test
public void testChat() {
2024-01-12 16:24:14 +08:00
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");
Llm llm = new SparkLlm(config);
2024-01-26 17:02:38 +08:00
String response = llm.chat("what is your name?");
2024-01-12 16:24:14 +08:00
2024-01-26 17:02:38 +08:00
System.out.println(response);
2024-01-12 16:24:14 +08:00
}
```
2024-01-16 16:39:10 +08:00
## Chat With Histories
```java
2024-01-26 17:02:38 +08:00
public static void main(String[] args) {
2024-01-16 16:39:10 +08:00
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");
Llm llm = new SparkLlm(config);
HistoriesPrompt prompt = new HistoriesPrompt();
System.out.println("ask for something...");
Scanner scanner = new Scanner(System.in);
String userInput = scanner.nextLine();
2024-01-26 17:02:38 +08:00
while (userInput != null) {
2024-01-16 16:39:10 +08:00
prompt.addMessage(new HumanMessage(userInput));
llm.chatStream(prompt, (context, response) -> {
2024-01-26 17:02:38 +08:00
System.out.println(">>>> " + response.getMessage().getContent());
2024-01-16 16:39:10 +08:00
});
userInput = scanner.nextLine();
}
}
```
2024-01-19 13:44:56 +08:00
## Function Calling
- step 1: define the function native
```java
public class WeatherUtil {
@FunctionDef(name = "get_the_weather_info", description = "get the weather info")
public static String getWeatherInfo(
@FunctionParam(name = "city", description = "the city name") String name
) {
2024-01-20 21:01:56 +08:00
//we should invoke the third part api for weather info here
2024-01-19 13:44:56 +08:00
return "Today it will be dull and overcast in " + name;
}
}
```
- step 2: invoke the function from LLM
```java
2024-01-26 17:02:38 +08:00
public static void main(String[] args) {
2024-01-19 13:44:56 +08:00
OpenAiLlmConfig config = new OpenAiLlmConfig();
config.setApiKey("sk-rts5NF6n*******");
OpenAiLlm llm = new OpenAiLlm(config);
2024-01-26 17:02:38 +08:00
FunctionPrompt prompt = new FunctionPrompt("How is the weather in Beijing today?", WeatherUtil.class);
FunctionResultResponse response = llm.chat(prompt);
2024-01-19 13:44:56 +08:00
Object result = response.getFunctionResult();
2024-01-19 13:44:56 +08:00
2024-01-26 17:02:38 +08:00
System.out.println(result);
//Today it will be dull and overcast in Beijing
2024-01-19 13:44:56 +08:00
}
```
2024-01-21 16:14:36 +08:00
## Communication
2024-05-15 11:33:31 +08:00
- Twitter: https://twitter.com/yangfuhai
2024-01-22 12:31:15 +08:00
## Modules
![](./docs/assets/images/modules.jpg)