Migrated repository
Go to file
2024-05-12 18:06:31 +08:00
agents-flex-bom refactor: optimize chain nodes 2024-05-11 16:08:59 +08:00
agents-flex-chain test: add QLExpressRouterNodeTest.java 2024-05-11 17:18:13 +08:00
agents-flex-core refactor: remove InputWrapper.java 2024-05-12 18:06:31 +08:00
agents-flex-document-parser v1.0.0-beta.2 prepare 2024-05-11 15:44:01 +08:00
agents-flex-llm refactor: refactor chain and llm message response 2024-05-11 19:57:46 +08:00
agents-flex-samples refactor: optimize LLMAgent 2024-05-11 20:06:12 +08:00
agents-flex-spring-boot-starter v1.0.0-beta.2 prepare 2024-05-11 15:44:01 +08:00
agents-flex-store v1.0.0-beta.2 prepare 2024-05-11 15:44:01 +08:00
agents-flex-test v1.0.0-beta.2 prepare 2024-05-11 15:44:01 +08:00
docs refactor: optimize Agent and LLMAgent 2024-05-12 13:42:26 +08:00
.editorconfig init 2024-01-12 16:24:14 +08:00
.gitignore chore: update .gitignore 2024-05-08 20:15:39 +08:00
changes.md refactor: optimize Agent and Chain 2024-05-12 17:04:52 +08:00
LICENSE init 2024-01-12 16:24:14 +08:00
pom.xml v1.0.0-beta.2 prepare 2024-05-11 15:44:01 +08:00
readme_zh.md doc: update readme 2024-05-11 17:32:54 +08:00
readme.md doc: update readme 2024-05-11 17:32:54 +08:00

English | 简体中文

Agents-Flex is a LLM Application Framework like LangChain base on Java.


Features

  • LLM Visit
  • Prompt、Prompt Template
  • Function Calling Definer, Invoker、Running
  • Memory
  • Embedding
  • Vector Store
  • Resource Loaders
  • Document
    • Splitter
    • Loader
    • Parser
      • PoiParser
      • PdfBoxParser
  • Agent
    • LLM Agent
  • Chain
    • SequentialChain
    • ParallelChain
    • LoopChain
    • ChainNode
      • AgentNode
      • EndNode
      • RouterNode
        • GroovyRouterNode
        • QLExpressRouterNode
        • LLMRouterNode

Simple Chat

use OpenAi LLM:

 @Test
public void testChat() {
    OpenAiLlmConfig config = new OpenAiLlmConfig();
    config.setApiKey("sk-rts5NF6n*******");

    Llm llm = new OpenAiLlm(config);
    String response = llm.chat("what is your name?");

    System.out.println(response);
}

use Qwen LLM:

 @Test
public void testChat() {
    QwenLlmConfig config = new QwenLlmConfig();
    config.setApiKey("sk-28a6be3236****");
    config.setModel("qwen-turbo");

    Llm llm = new QwenLlm(config);
    String response = llm.chat("what is your name?");

    System.out.println(response);
}

use SparkAi LLM:

 @Test
public void testChat() {
    SparkLlmConfig config = new SparkLlmConfig();
    config.setAppId("****");
    config.setApiKey("****");
    config.setApiSecret("****");

    Llm llm = new SparkLlm(config);
    String response = llm.chat("what is your name?");

    System.out.println(response);
}

Chat With Histories

public static void main(String[] args) {
    SparkLlmConfig config = new SparkLlmConfig();
    config.setAppId("****");
    config.setApiKey("****");
    config.setApiSecret("****");

    Llm llm = new SparkLlm(config);

    HistoriesPrompt prompt = new HistoriesPrompt();

    System.out.println("ask for something...");
    Scanner scanner = new Scanner(System.in);
    String userInput = scanner.nextLine();

    while (userInput != null) {

        prompt.addMessage(new HumanMessage(userInput));

        llm.chatStream(prompt, (context, response) -> {
            System.out.println(">>>> " + response.getMessage().getContent());
        });

        userInput = scanner.nextLine();
    }
}

Function Calling

  • step 1: define the function native
public class WeatherUtil {

    @FunctionDef(name = "get_the_weather_info", description = "get the weather info")
    public static String getWeatherInfo(
        @FunctionParam(name = "city", description = "the city name") String name
    ) {
        //we should invoke the third part api for weather info here
        return "Today it will be dull and overcast in " + name;
    }
}

  • step 2: invoke the function from LLM
 public static void main(String[] args) {
    OpenAiLlmConfig config = new OpenAiLlmConfig();
    config.setApiKey("sk-rts5NF6n*******");

    OpenAiLlm llm = new OpenAiLlm(config);

    FunctionPrompt prompt = new FunctionPrompt("How is the weather in Beijing today?", WeatherUtil.class);
    FunctionResultResponse response = llm.chat(prompt);

    Object result = response.invoke();

    System.out.println(result);
    //Today it will be dull and overcast in Beijing
}

Communication

Modules