agents-flex/readme_zh.md
2024-05-11 17:32:54 +08:00

176 lines
3.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<h4 align="right"><a href="./readme.md">English</a> | <strong>简体中文</strong></h4>
<p align="center">
<img src="./docs/assets/images/banner.png"/>
</p>
# Agents-Flex 一个基于 Java 的 LLM大语言模型应用开发框架。
---
## 基本能力
- LLM 的访问能力
- Prompt、Prompt Template 定义加载的能力
- Function Calling 定义、调用和执行等能力
- 记忆的能力Memory
- Embedding
- Vector Store
- 文档处理
- 加载器Loader
- Http
- FileSystem
- 分割器Splitter
- 解析器Parser
- PoiParser
- PdfBoxParser
- Agent
- LLM Agent
- IOAgent
- Chain 执行链
- SequentialChain 顺序执行链
- ParallelChain 并发(并行)执行链
- LoopChain 循环执行连
- ChainNode
- AgentNode Agent 执行节点
- EndNode 终点节点
- RouterNode 路由节点
- GroovyRouterNode Groovy 规则路由
- QLExpressRouterNode QLExpress 规则路由
- LLMRouterNode LLM路由由 AI 自行判断路由规则)
## 简单对话
使用 OpenAi 大语言模型:
```java
@Test
public void testChat() {
OpenAiLlmConfig config = new OpenAiLlmConfig();
config.setApiKey("sk-rts5NF6n*******");
Llm llm = new OpenAiLlm(config);
String response = llm.chat("请问你叫什么名字");
System.out.println(response);
}
```
使用 “通义千问” 大语言模型:
```java
@Test
public void testChat() {
QwenLlmConfig config = new QwenLlmConfig();
config.setApiKey("sk-28a6be3236****");
config.setModel("qwen-turbo");
Llm llm = new QwenLlm(config);
String response = llm.chat("请问你叫什么名字");
System.out.println(response);
}
```
使用 “讯飞星火” 大语言模型:
```java
@Test
public void testChat() {
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");
Llm llm = new SparkLlm(config);
String response = llm.chat("请问你叫什么名字");
System.out.println(response);
}
```
## 历史对话示例
```java
public static void main(String[] args) {
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");
Llm llm = new SparkLlm(config);
HistoriesPrompt prompt = new HistoriesPrompt();
System.out.println("您想问什么?");
Scanner scanner = new Scanner(System.in);
String userInput = scanner.nextLine();
while (userInput != null) {
prompt.addMessage(new HumanMessage(userInput));
llm.chatStream(prompt, (context, response) -> {
System.out.println(">>>> " + response.getMessage().getContent());
});
userInput = scanner.nextLine();
}
}
```
## Function Calling
- 第一步: 通过注解定义本地方法
```java
public class WeatherUtil {
@FunctionDef(name = "get_the_weather_info", description = "get the weather info")
public static String getWeatherInfo(
@FunctionParam(name = "city", description = "the city name") String name
) {
//在这里,我们应该通过第三方接口调用 api 信息
return name + "的天气是阴转多云。 ";
}
}
```
- 第二步: 通过 Prompt、Functions 传入给大模型,然后得到结果
```java
public static void main(String[] args) {
OpenAiLlmConfig config = new OpenAiLlmConfig();
config.setApiKey("sk-rts5NF6n*******");
OpenAiLlm llm = new OpenAiLlm(config);
FunctionPrompt prompt = new FunctionPrompt("今天北京的天气怎么样", WeatherUtil.class);
FunctionResultResponse response = llm.chat(prompt);
Object result = response.invoke();
System.out.println(result);
//"北京的天气是阴转多云。 "
}
```
## 交流群
![](./docs/assets/images/wechat-group.png)
## 模块构成
![](./docs/assets/images/modules.jpg)