mirror of
https://gitee.com/agents-flex/agents-flex.git
synced 2024-11-29 18:38:17 +08:00
Migrated repository
c9c7dd8cfe
Merge pull request !4 from Drlux/N/A |
||
---|---|---|
agents-flex-bom | ||
agents-flex-core | ||
agents-flex-document-parser | ||
agents-flex-llm | ||
agents-flex-samples | ||
agents-flex-spring-boot-starter | ||
agents-flex-store | ||
agents-flex-test | ||
docs | ||
.editorconfig | ||
.gitignore | ||
changes.md | ||
LICENSE | ||
pom.xml | ||
readme_zh.md | ||
readme.md |
English | 简体中文
Agents-Flex is a LLM Application Framework like LangChain base on Java.
Features
- LLM Visit
- Prompt、Prompt Template Loader
- Function Calling Definer, Invoker、Running
- Memory
- Embedding
- Vector Storage
- Resource Loaders
- Document
- Splitter
- Loader
- Parser
- PoiParser
- PdfBoxParser
- LLMs Chain
- Agents Chain
Simple Chat
use OpenAi LLM:
@Test
public void testChat() {
OpenAiLlmConfig config = new OpenAiLlmConfig();
config.setApiKey("sk-rts5NF6n*******");
Llm llm = new OpenAiLlm(config);
String response = llm.chat("what is your name?");
System.out.println(response);
}
use Qwen LLM:
@Test
public void testChat() {
QwenLlmConfig config = new QwenLlmConfig();
config.setApiKey("sk-28a6be3236****");
config.setModel("qwen-turbo");
Llm llm = new QwenLlm(config);
String response = llm.chat("what is your name?");
System.out.println(response);
}
use SparkAi LLM:
@Test
public void testChat() {
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");
Llm llm = new SparkLlm(config);
String response = llm.chat("what is your name?");
System.out.println(response);
}
Chat With Histories
public static void main(String[] args) {
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");
Llm llm = new SparkLlm(config);
HistoriesPrompt prompt = new HistoriesPrompt();
System.out.println("ask for something...");
Scanner scanner = new Scanner(System.in);
String userInput = scanner.nextLine();
while (userInput != null) {
prompt.addMessage(new HumanMessage(userInput));
llm.chatStream(prompt, (context, response) -> {
System.out.println(">>>> " + response.getMessage().getContent());
});
userInput = scanner.nextLine();
}
}
Function Calling
- step 1: define the function native
public class WeatherUtil {
@FunctionDef(name = "get_the_weather_info", description = "get the weather info")
public static String getWeatherInfo(
@FunctionParam(name = "city", description = "the city name") String name
) {
//we should invoke the third part api for weather info here
return "Today it will be dull and overcast in " + name;
}
}
- step 2: invoke the function from LLM
public static void main(String[] args) {
OpenAiLlmConfig config = new OpenAiLlmConfig();
config.setApiKey("sk-rts5NF6n*******");
OpenAiLlm llm = new OpenAiLlm(config);
FunctionPrompt prompt = new FunctionPrompt("How is the weather in Beijing today?", WeatherUtil.class);
FunctionResultResponse response = llm.chat(prompt);
Object result = response.invoke();
System.out.println(result);
//Today it will be dull and overcast in Beijing
}