amis2/scripts/bot/gui.py

112 lines
3.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from vector_store import get_client
from split_markdown import split_markdown
from embedding import get_embedding
import gradio as gr
import os
import pickle
from llm.wenxin import Wenxin, ModelName
from dotenv import load_dotenv
load_dotenv()
chroma_client = get_client()
collection = chroma_client.get_collection(name="amis")
wenxin = Wenxin()
text_blocks_by_id = {}
with open(os.path.join(os.path.dirname(__file__), 'text.pickle'), 'rb') as f:
text_blocks_by_id = pickle.load(f)
def get_prompt(context, query):
return f"""
请只根据下面的资料回答问题,如果无法根据这些资料回答,回答“找不到相关答案”:
资料:
{context}
问题是:{query}
回答:"""
def get_context(search_result, include_code=True, max_length=1024):
context = ""
doc_ids = []
for doc_id in search_result['ids'][0]:
doc_id = doc_id.split("_")[0]
if doc_id not in doc_ids:
doc_ids.append(doc_id)
for doc_id in doc_ids:
markdown_block = text_blocks_by_id[doc_id]
block_text = markdown_block.gen_text(512, include_code)
if (len(context) + len(block_text)) < max_length:
context += block_text + "\n\n"
return context
query = gr.Textbox(label="问题")
include_code = gr.Checkbox(value=True, label="提示词中是否要包含 amis schema",
info="包含的好处是大模型会返回 json但也会导致内容太长只能提供少量段落给大模型导致错过重要资料")
n_result = gr.Number(
value=10, precision=0, label="向量搜索查询返回个数")
bot_result = gr.Textbox(label="文心的回答")
bot_turbo_result = gr.Textbox(label="文心 Turbo 的回答")
booomz_result = gr.Textbox(label="开源 BLOOMZ 的回答")
prompt = gr.Textbox(label="提示词")
vector_search_result = gr.Dataframe(
label="向量相关搜索结果,这个结果只是为了辅助调试,确认是因为没找到相关内容还是大模型没能理解",
headers=["相关段落", "所属文档"],
datatype=["str", "str"],
col_count=(2, "dynamic"),
wrap=True
)
def amis_search(query, n_result=10, include_code=True):
if query.strip() == "":
return "必须有输入", "", "", []
search_result = collection.query(
query_embeddings=get_embedding(query).tolist(),
n_results=n_result
)
context = get_context(search_result, include_code)
if (context == ""):
return "检索不到相关内容", "", "", []
prompt = get_prompt(context, query)
bot_result = wenxin.generate(prompt, ModelName.ERNIE_BOT)
# bloomz_result = wenxin.generate(prompt, ModelName.BLOOMZ_7B)
markdown_blocks = []
index = 0
for doc in search_result['documents'][0]:
markdown_block = []
markdown_block.append(doc)
if index < len(search_result['metadatas'][0]):
source = search_result['metadatas'][0][index]['source'].replace(
'docs/zh-CN/', '')
markdown_block.append(
source)
else:
print("index out of range", doc)
markdown_blocks.append(markdown_block)
index += 1
return bot_result, prompt, markdown_blocks
demo = gr.Interface(amis_search, title="amis 文档问答机器人", inputs=[
query, n_result, include_code], outputs=[bot_result, prompt, vector_search_result])
if __name__ == '__main__':
demo.queue(concurrency_count=10).launch(share=False, server_name="0.0.0.0")