mirror of
https://gitee.com/zlgopen/awtk.git
synced 2024-12-04 21:17:50 +08:00
5588 lines
173 KiB
C
5588 lines
173 KiB
C
/* Generated by wayland-scanner 1.14.0 */
|
|
|
|
#ifndef WAYLAND_CLIENT_PROTOCOL_H
|
|
#define WAYLAND_CLIENT_PROTOCOL_H
|
|
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include "wayland-client.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* @page page_wayland The wayland protocol
|
|
* @section page_ifaces_wayland Interfaces
|
|
* - @subpage page_iface_wl_display - core global object
|
|
* - @subpage page_iface_wl_registry - global registry object
|
|
* - @subpage page_iface_wl_callback - callback object
|
|
* - @subpage page_iface_wl_compositor - the compositor singleton
|
|
* - @subpage page_iface_wl_shm_pool - a shared memory pool
|
|
* - @subpage page_iface_wl_shm - shared memory support
|
|
* - @subpage page_iface_wl_buffer - content for a wl_surface
|
|
* - @subpage page_iface_wl_data_offer - offer to transfer data
|
|
* - @subpage page_iface_wl_data_source - offer to transfer data
|
|
* - @subpage page_iface_wl_data_device - data transfer device
|
|
* - @subpage page_iface_wl_data_device_manager - data transfer interface
|
|
* - @subpage page_iface_wl_shell - create desktop-style surfaces
|
|
* - @subpage page_iface_wl_shell_surface - desktop-style metadata interface
|
|
* - @subpage page_iface_wl_surface - an onscreen surface
|
|
* - @subpage page_iface_wl_seat - group of input devices
|
|
* - @subpage page_iface_wl_pointer - pointer input device
|
|
* - @subpage page_iface_wl_keyboard - keyboard input device
|
|
* - @subpage page_iface_wl_touch - touchscreen input device
|
|
* - @subpage page_iface_wl_output - compositor output region
|
|
* - @subpage page_iface_wl_region - region interface
|
|
* - @subpage page_iface_wl_subcompositor - sub-surface compositing
|
|
* - @subpage page_iface_wl_subsurface - sub-surface interface to a wl_surface
|
|
* @section page_copyright_wayland Copyright
|
|
* <pre>
|
|
*
|
|
* Copyright © 2008-2011 Kristian Høgsberg
|
|
* Copyright © 2010-2011 Intel Corporation
|
|
* Copyright © 2012-2013 Collabora, Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person
|
|
* obtaining a copy of this software and associated documentation files
|
|
* (the "Software"), to deal in the Software without restriction,
|
|
* including without limitation the rights to use, copy, modify, merge,
|
|
* publish, distribute, sublicense, and/or sell copies of the Software,
|
|
* and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial
|
|
* portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
* </pre>
|
|
*/
|
|
struct wl_buffer;
|
|
struct wl_callback;
|
|
struct wl_compositor;
|
|
struct wl_data_device;
|
|
struct wl_data_device_manager;
|
|
struct wl_data_offer;
|
|
struct wl_data_source;
|
|
struct wl_display;
|
|
struct wl_keyboard;
|
|
struct wl_output;
|
|
struct wl_pointer;
|
|
struct wl_region;
|
|
struct wl_registry;
|
|
struct wl_seat;
|
|
struct wl_shell;
|
|
struct wl_shell_surface;
|
|
struct wl_shm;
|
|
struct wl_shm_pool;
|
|
struct wl_subcompositor;
|
|
struct wl_subsurface;
|
|
struct wl_surface;
|
|
struct wl_touch;
|
|
|
|
/**
|
|
* @page page_iface_wl_display wl_display
|
|
* @section page_iface_wl_display_desc Description
|
|
*
|
|
* The core global object. This is a special singleton object. It
|
|
* is used for internal Wayland protocol features.
|
|
* @section page_iface_wl_display_api API
|
|
* See @ref iface_wl_display.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_display The wl_display interface
|
|
*
|
|
* The core global object. This is a special singleton object. It
|
|
* is used for internal Wayland protocol features.
|
|
*/
|
|
extern const struct wl_interface wl_display_interface;
|
|
/**
|
|
* @page page_iface_wl_registry wl_registry
|
|
* @section page_iface_wl_registry_desc Description
|
|
*
|
|
* The singleton global registry object. The server has a number of
|
|
* global objects that are available to all clients. These objects
|
|
* typically represent an actual object in the server (for example,
|
|
* an input device) or they are singleton objects that provide
|
|
* extension functionality.
|
|
*
|
|
* When a client creates a registry object, the registry object
|
|
* will emit a global event for each global currently in the
|
|
* registry. Globals come and go as a result of device or
|
|
* monitor hotplugs, reconfiguration or other events, and the
|
|
* registry will send out global and global_remove events to
|
|
* keep the client up to date with the changes. To mark the end
|
|
* of the initial burst of events, the client can use the
|
|
* wl_display.sync request immediately after calling
|
|
* wl_display.get_registry.
|
|
*
|
|
* A client can bind to a global object by using the bind
|
|
* request. This creates a client-side handle that lets the object
|
|
* emit events to the client and lets the client invoke requests on
|
|
* the object.
|
|
* @section page_iface_wl_registry_api API
|
|
* See @ref iface_wl_registry.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_registry The wl_registry interface
|
|
*
|
|
* The singleton global registry object. The server has a number of
|
|
* global objects that are available to all clients. These objects
|
|
* typically represent an actual object in the server (for example,
|
|
* an input device) or they are singleton objects that provide
|
|
* extension functionality.
|
|
*
|
|
* When a client creates a registry object, the registry object
|
|
* will emit a global event for each global currently in the
|
|
* registry. Globals come and go as a result of device or
|
|
* monitor hotplugs, reconfiguration or other events, and the
|
|
* registry will send out global and global_remove events to
|
|
* keep the client up to date with the changes. To mark the end
|
|
* of the initial burst of events, the client can use the
|
|
* wl_display.sync request immediately after calling
|
|
* wl_display.get_registry.
|
|
*
|
|
* A client can bind to a global object by using the bind
|
|
* request. This creates a client-side handle that lets the object
|
|
* emit events to the client and lets the client invoke requests on
|
|
* the object.
|
|
*/
|
|
extern const struct wl_interface wl_registry_interface;
|
|
/**
|
|
* @page page_iface_wl_callback wl_callback
|
|
* @section page_iface_wl_callback_desc Description
|
|
*
|
|
* Clients can handle the 'done' event to get notified when
|
|
* the related request is done.
|
|
* @section page_iface_wl_callback_api API
|
|
* See @ref iface_wl_callback.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_callback The wl_callback interface
|
|
*
|
|
* Clients can handle the 'done' event to get notified when
|
|
* the related request is done.
|
|
*/
|
|
extern const struct wl_interface wl_callback_interface;
|
|
/**
|
|
* @page page_iface_wl_compositor wl_compositor
|
|
* @section page_iface_wl_compositor_desc Description
|
|
*
|
|
* A compositor. This object is a singleton global. The
|
|
* compositor is in charge of combining the contents of multiple
|
|
* surfaces into one displayable output.
|
|
* @section page_iface_wl_compositor_api API
|
|
* See @ref iface_wl_compositor.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_compositor The wl_compositor interface
|
|
*
|
|
* A compositor. This object is a singleton global. The
|
|
* compositor is in charge of combining the contents of multiple
|
|
* surfaces into one displayable output.
|
|
*/
|
|
extern const struct wl_interface wl_compositor_interface;
|
|
/**
|
|
* @page page_iface_wl_shm_pool wl_shm_pool
|
|
* @section page_iface_wl_shm_pool_desc Description
|
|
*
|
|
* The wl_shm_pool object encapsulates a piece of memory shared
|
|
* between the compositor and client. Through the wl_shm_pool
|
|
* object, the client can allocate shared memory wl_buffer objects.
|
|
* All objects created through the same pool share the same
|
|
* underlying mapped memory. Reusing the mapped memory avoids the
|
|
* setup/teardown overhead and is useful when interactively resizing
|
|
* a surface or for many small buffers.
|
|
* @section page_iface_wl_shm_pool_api API
|
|
* See @ref iface_wl_shm_pool.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_shm_pool The wl_shm_pool interface
|
|
*
|
|
* The wl_shm_pool object encapsulates a piece of memory shared
|
|
* between the compositor and client. Through the wl_shm_pool
|
|
* object, the client can allocate shared memory wl_buffer objects.
|
|
* All objects created through the same pool share the same
|
|
* underlying mapped memory. Reusing the mapped memory avoids the
|
|
* setup/teardown overhead and is useful when interactively resizing
|
|
* a surface or for many small buffers.
|
|
*/
|
|
extern const struct wl_interface wl_shm_pool_interface;
|
|
/**
|
|
* @page page_iface_wl_shm wl_shm
|
|
* @section page_iface_wl_shm_desc Description
|
|
*
|
|
* A singleton global object that provides support for shared
|
|
* memory.
|
|
*
|
|
* Clients can create wl_shm_pool objects using the create_pool
|
|
* request.
|
|
*
|
|
* At connection setup time, the wl_shm object emits one or more
|
|
* format events to inform clients about the valid pixel formats
|
|
* that can be used for buffers.
|
|
* @section page_iface_wl_shm_api API
|
|
* See @ref iface_wl_shm.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_shm The wl_shm interface
|
|
*
|
|
* A singleton global object that provides support for shared
|
|
* memory.
|
|
*
|
|
* Clients can create wl_shm_pool objects using the create_pool
|
|
* request.
|
|
*
|
|
* At connection setup time, the wl_shm object emits one or more
|
|
* format events to inform clients about the valid pixel formats
|
|
* that can be used for buffers.
|
|
*/
|
|
extern const struct wl_interface wl_shm_interface;
|
|
/**
|
|
* @page page_iface_wl_buffer wl_buffer
|
|
* @section page_iface_wl_buffer_desc Description
|
|
*
|
|
* A buffer provides the content for a wl_surface. Buffers are
|
|
* created through factory interfaces such as wl_drm, wl_shm or
|
|
* similar. It has a width and a height and can be attached to a
|
|
* wl_surface, but the mechanism by which a client provides and
|
|
* updates the contents is defined by the buffer factory interface.
|
|
* @section page_iface_wl_buffer_api API
|
|
* See @ref iface_wl_buffer.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_buffer The wl_buffer interface
|
|
*
|
|
* A buffer provides the content for a wl_surface. Buffers are
|
|
* created through factory interfaces such as wl_drm, wl_shm or
|
|
* similar. It has a width and a height and can be attached to a
|
|
* wl_surface, but the mechanism by which a client provides and
|
|
* updates the contents is defined by the buffer factory interface.
|
|
*/
|
|
extern const struct wl_interface wl_buffer_interface;
|
|
/**
|
|
* @page page_iface_wl_data_offer wl_data_offer
|
|
* @section page_iface_wl_data_offer_desc Description
|
|
*
|
|
* A wl_data_offer represents a piece of data offered for transfer
|
|
* by another client (the source client). It is used by the
|
|
* copy-and-paste and drag-and-drop mechanisms. The offer
|
|
* describes the different mime types that the data can be
|
|
* converted to and provides the mechanism for transferring the
|
|
* data directly from the source client.
|
|
* @section page_iface_wl_data_offer_api API
|
|
* See @ref iface_wl_data_offer.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_data_offer The wl_data_offer interface
|
|
*
|
|
* A wl_data_offer represents a piece of data offered for transfer
|
|
* by another client (the source client). It is used by the
|
|
* copy-and-paste and drag-and-drop mechanisms. The offer
|
|
* describes the different mime types that the data can be
|
|
* converted to and provides the mechanism for transferring the
|
|
* data directly from the source client.
|
|
*/
|
|
extern const struct wl_interface wl_data_offer_interface;
|
|
/**
|
|
* @page page_iface_wl_data_source wl_data_source
|
|
* @section page_iface_wl_data_source_desc Description
|
|
*
|
|
* The wl_data_source object is the source side of a wl_data_offer.
|
|
* It is created by the source client in a data transfer and
|
|
* provides a way to describe the offered data and a way to respond
|
|
* to requests to transfer the data.
|
|
* @section page_iface_wl_data_source_api API
|
|
* See @ref iface_wl_data_source.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_data_source The wl_data_source interface
|
|
*
|
|
* The wl_data_source object is the source side of a wl_data_offer.
|
|
* It is created by the source client in a data transfer and
|
|
* provides a way to describe the offered data and a way to respond
|
|
* to requests to transfer the data.
|
|
*/
|
|
extern const struct wl_interface wl_data_source_interface;
|
|
/**
|
|
* @page page_iface_wl_data_device wl_data_device
|
|
* @section page_iface_wl_data_device_desc Description
|
|
*
|
|
* There is one wl_data_device per seat which can be obtained
|
|
* from the global wl_data_device_manager singleton.
|
|
*
|
|
* A wl_data_device provides access to inter-client data transfer
|
|
* mechanisms such as copy-and-paste and drag-and-drop.
|
|
* @section page_iface_wl_data_device_api API
|
|
* See @ref iface_wl_data_device.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_data_device The wl_data_device interface
|
|
*
|
|
* There is one wl_data_device per seat which can be obtained
|
|
* from the global wl_data_device_manager singleton.
|
|
*
|
|
* A wl_data_device provides access to inter-client data transfer
|
|
* mechanisms such as copy-and-paste and drag-and-drop.
|
|
*/
|
|
extern const struct wl_interface wl_data_device_interface;
|
|
/**
|
|
* @page page_iface_wl_data_device_manager wl_data_device_manager
|
|
* @section page_iface_wl_data_device_manager_desc Description
|
|
*
|
|
* The wl_data_device_manager is a singleton global object that
|
|
* provides access to inter-client data transfer mechanisms such as
|
|
* copy-and-paste and drag-and-drop. These mechanisms are tied to
|
|
* a wl_seat and this interface lets a client get a wl_data_device
|
|
* corresponding to a wl_seat.
|
|
*
|
|
* Depending on the version bound, the objects created from the bound
|
|
* wl_data_device_manager object will have different requirements for
|
|
* functioning properly. See wl_data_source.set_actions,
|
|
* wl_data_offer.accept and wl_data_offer.finish for details.
|
|
* @section page_iface_wl_data_device_manager_api API
|
|
* See @ref iface_wl_data_device_manager.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_data_device_manager The wl_data_device_manager interface
|
|
*
|
|
* The wl_data_device_manager is a singleton global object that
|
|
* provides access to inter-client data transfer mechanisms such as
|
|
* copy-and-paste and drag-and-drop. These mechanisms are tied to
|
|
* a wl_seat and this interface lets a client get a wl_data_device
|
|
* corresponding to a wl_seat.
|
|
*
|
|
* Depending on the version bound, the objects created from the bound
|
|
* wl_data_device_manager object will have different requirements for
|
|
* functioning properly. See wl_data_source.set_actions,
|
|
* wl_data_offer.accept and wl_data_offer.finish for details.
|
|
*/
|
|
extern const struct wl_interface wl_data_device_manager_interface;
|
|
/**
|
|
* @page page_iface_wl_shell wl_shell
|
|
* @section page_iface_wl_shell_desc Description
|
|
*
|
|
* This interface is implemented by servers that provide
|
|
* desktop-style user interfaces.
|
|
*
|
|
* It allows clients to associate a wl_shell_surface with
|
|
* a basic surface.
|
|
* @section page_iface_wl_shell_api API
|
|
* See @ref iface_wl_shell.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_shell The wl_shell interface
|
|
*
|
|
* This interface is implemented by servers that provide
|
|
* desktop-style user interfaces.
|
|
*
|
|
* It allows clients to associate a wl_shell_surface with
|
|
* a basic surface.
|
|
*/
|
|
extern const struct wl_interface wl_shell_interface;
|
|
/**
|
|
* @page page_iface_wl_shell_surface wl_shell_surface
|
|
* @section page_iface_wl_shell_surface_desc Description
|
|
*
|
|
* An interface that may be implemented by a wl_surface, for
|
|
* implementations that provide a desktop-style user interface.
|
|
*
|
|
* It provides requests to treat surfaces like toplevel, fullscreen
|
|
* or popup windows, move, resize or maximize them, associate
|
|
* metadata like title and class, etc.
|
|
*
|
|
* On the server side the object is automatically destroyed when
|
|
* the related wl_surface is destroyed. On the client side,
|
|
* wl_shell_surface_destroy() must be called before destroying
|
|
* the wl_surface object.
|
|
* @section page_iface_wl_shell_surface_api API
|
|
* See @ref iface_wl_shell_surface.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_shell_surface The wl_shell_surface interface
|
|
*
|
|
* An interface that may be implemented by a wl_surface, for
|
|
* implementations that provide a desktop-style user interface.
|
|
*
|
|
* It provides requests to treat surfaces like toplevel, fullscreen
|
|
* or popup windows, move, resize or maximize them, associate
|
|
* metadata like title and class, etc.
|
|
*
|
|
* On the server side the object is automatically destroyed when
|
|
* the related wl_surface is destroyed. On the client side,
|
|
* wl_shell_surface_destroy() must be called before destroying
|
|
* the wl_surface object.
|
|
*/
|
|
extern const struct wl_interface wl_shell_surface_interface;
|
|
/**
|
|
* @page page_iface_wl_surface wl_surface
|
|
* @section page_iface_wl_surface_desc Description
|
|
*
|
|
* A surface is a rectangular area that is displayed on the screen.
|
|
* It has a location, size and pixel contents.
|
|
*
|
|
* The size of a surface (and relative positions on it) is described
|
|
* in surface-local coordinates, which may differ from the buffer
|
|
* coordinates of the pixel content, in case a buffer_transform
|
|
* or a buffer_scale is used.
|
|
*
|
|
* A surface without a "role" is fairly useless: a compositor does
|
|
* not know where, when or how to present it. The role is the
|
|
* purpose of a wl_surface. Examples of roles are a cursor for a
|
|
* pointer (as set by wl_pointer.set_cursor), a drag icon
|
|
* (wl_data_device.start_drag), a sub-surface
|
|
* (wl_subcompositor.get_subsurface), and a window as defined by a
|
|
* shell protocol (e.g. wl_shell.get_shell_surface).
|
|
*
|
|
* A surface can have only one role at a time. Initially a
|
|
* wl_surface does not have a role. Once a wl_surface is given a
|
|
* role, it is set permanently for the whole lifetime of the
|
|
* wl_surface object. Giving the current role again is allowed,
|
|
* unless explicitly forbidden by the relevant interface
|
|
* specification.
|
|
*
|
|
* Surface roles are given by requests in other interfaces such as
|
|
* wl_pointer.set_cursor. The request should explicitly mention
|
|
* that this request gives a role to a wl_surface. Often, this
|
|
* request also creates a new protocol object that represents the
|
|
* role and adds additional functionality to wl_surface. When a
|
|
* client wants to destroy a wl_surface, they must destroy this 'role
|
|
* object' before the wl_surface.
|
|
*
|
|
* Destroying the role object does not remove the role from the
|
|
* wl_surface, but it may stop the wl_surface from "playing the role".
|
|
* For instance, if a wl_subsurface object is destroyed, the wl_surface
|
|
* it was created for will be unmapped and forget its position and
|
|
* z-order. It is allowed to create a wl_subsurface for the same
|
|
* wl_surface again, but it is not allowed to use the wl_surface as
|
|
* a cursor (cursor is a different role than sub-surface, and role
|
|
* switching is not allowed).
|
|
* @section page_iface_wl_surface_api API
|
|
* See @ref iface_wl_surface.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_surface The wl_surface interface
|
|
*
|
|
* A surface is a rectangular area that is displayed on the screen.
|
|
* It has a location, size and pixel contents.
|
|
*
|
|
* The size of a surface (and relative positions on it) is described
|
|
* in surface-local coordinates, which may differ from the buffer
|
|
* coordinates of the pixel content, in case a buffer_transform
|
|
* or a buffer_scale is used.
|
|
*
|
|
* A surface without a "role" is fairly useless: a compositor does
|
|
* not know where, when or how to present it. The role is the
|
|
* purpose of a wl_surface. Examples of roles are a cursor for a
|
|
* pointer (as set by wl_pointer.set_cursor), a drag icon
|
|
* (wl_data_device.start_drag), a sub-surface
|
|
* (wl_subcompositor.get_subsurface), and a window as defined by a
|
|
* shell protocol (e.g. wl_shell.get_shell_surface).
|
|
*
|
|
* A surface can have only one role at a time. Initially a
|
|
* wl_surface does not have a role. Once a wl_surface is given a
|
|
* role, it is set permanently for the whole lifetime of the
|
|
* wl_surface object. Giving the current role again is allowed,
|
|
* unless explicitly forbidden by the relevant interface
|
|
* specification.
|
|
*
|
|
* Surface roles are given by requests in other interfaces such as
|
|
* wl_pointer.set_cursor. The request should explicitly mention
|
|
* that this request gives a role to a wl_surface. Often, this
|
|
* request also creates a new protocol object that represents the
|
|
* role and adds additional functionality to wl_surface. When a
|
|
* client wants to destroy a wl_surface, they must destroy this 'role
|
|
* object' before the wl_surface.
|
|
*
|
|
* Destroying the role object does not remove the role from the
|
|
* wl_surface, but it may stop the wl_surface from "playing the role".
|
|
* For instance, if a wl_subsurface object is destroyed, the wl_surface
|
|
* it was created for will be unmapped and forget its position and
|
|
* z-order. It is allowed to create a wl_subsurface for the same
|
|
* wl_surface again, but it is not allowed to use the wl_surface as
|
|
* a cursor (cursor is a different role than sub-surface, and role
|
|
* switching is not allowed).
|
|
*/
|
|
extern const struct wl_interface wl_surface_interface;
|
|
/**
|
|
* @page page_iface_wl_seat wl_seat
|
|
* @section page_iface_wl_seat_desc Description
|
|
*
|
|
* A seat is a group of keyboards, pointer and touch devices. This
|
|
* object is published as a global during start up, or when such a
|
|
* device is hot plugged. A seat typically has a pointer and
|
|
* maintains a keyboard focus and a pointer focus.
|
|
* @section page_iface_wl_seat_api API
|
|
* See @ref iface_wl_seat.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_seat The wl_seat interface
|
|
*
|
|
* A seat is a group of keyboards, pointer and touch devices. This
|
|
* object is published as a global during start up, or when such a
|
|
* device is hot plugged. A seat typically has a pointer and
|
|
* maintains a keyboard focus and a pointer focus.
|
|
*/
|
|
extern const struct wl_interface wl_seat_interface;
|
|
/**
|
|
* @page page_iface_wl_pointer wl_pointer
|
|
* @section page_iface_wl_pointer_desc Description
|
|
*
|
|
* The wl_pointer interface represents one or more input devices,
|
|
* such as mice, which control the pointer location and pointer_focus
|
|
* of a seat.
|
|
*
|
|
* The wl_pointer interface generates motion, enter and leave
|
|
* events for the surfaces that the pointer is located over,
|
|
* and button and axis events for button presses, button releases
|
|
* and scrolling.
|
|
* @section page_iface_wl_pointer_api API
|
|
* See @ref iface_wl_pointer.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_pointer The wl_pointer interface
|
|
*
|
|
* The wl_pointer interface represents one or more input devices,
|
|
* such as mice, which control the pointer location and pointer_focus
|
|
* of a seat.
|
|
*
|
|
* The wl_pointer interface generates motion, enter and leave
|
|
* events for the surfaces that the pointer is located over,
|
|
* and button and axis events for button presses, button releases
|
|
* and scrolling.
|
|
*/
|
|
extern const struct wl_interface wl_pointer_interface;
|
|
/**
|
|
* @page page_iface_wl_keyboard wl_keyboard
|
|
* @section page_iface_wl_keyboard_desc Description
|
|
*
|
|
* The wl_keyboard interface represents one or more keyboards
|
|
* associated with a seat.
|
|
* @section page_iface_wl_keyboard_api API
|
|
* See @ref iface_wl_keyboard.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_keyboard The wl_keyboard interface
|
|
*
|
|
* The wl_keyboard interface represents one or more keyboards
|
|
* associated with a seat.
|
|
*/
|
|
extern const struct wl_interface wl_keyboard_interface;
|
|
/**
|
|
* @page page_iface_wl_touch wl_touch
|
|
* @section page_iface_wl_touch_desc Description
|
|
*
|
|
* The wl_touch interface represents a touchscreen
|
|
* associated with a seat.
|
|
*
|
|
* Touch interactions can consist of one or more contacts.
|
|
* For each contact, a series of events is generated, starting
|
|
* with a down event, followed by zero or more motion events,
|
|
* and ending with an up event. Events relating to the same
|
|
* contact point can be identified by the ID of the sequence.
|
|
* @section page_iface_wl_touch_api API
|
|
* See @ref iface_wl_touch.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_touch The wl_touch interface
|
|
*
|
|
* The wl_touch interface represents a touchscreen
|
|
* associated with a seat.
|
|
*
|
|
* Touch interactions can consist of one or more contacts.
|
|
* For each contact, a series of events is generated, starting
|
|
* with a down event, followed by zero or more motion events,
|
|
* and ending with an up event. Events relating to the same
|
|
* contact point can be identified by the ID of the sequence.
|
|
*/
|
|
extern const struct wl_interface wl_touch_interface;
|
|
/**
|
|
* @page page_iface_wl_output wl_output
|
|
* @section page_iface_wl_output_desc Description
|
|
*
|
|
* An output describes part of the compositor geometry. The
|
|
* compositor works in the 'compositor coordinate system' and an
|
|
* output corresponds to a rectangular area in that space that is
|
|
* actually visible. This typically corresponds to a monitor that
|
|
* displays part of the compositor space. This object is published
|
|
* as global during start up, or when a monitor is hotplugged.
|
|
* @section page_iface_wl_output_api API
|
|
* See @ref iface_wl_output.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_output The wl_output interface
|
|
*
|
|
* An output describes part of the compositor geometry. The
|
|
* compositor works in the 'compositor coordinate system' and an
|
|
* output corresponds to a rectangular area in that space that is
|
|
* actually visible. This typically corresponds to a monitor that
|
|
* displays part of the compositor space. This object is published
|
|
* as global during start up, or when a monitor is hotplugged.
|
|
*/
|
|
extern const struct wl_interface wl_output_interface;
|
|
/**
|
|
* @page page_iface_wl_region wl_region
|
|
* @section page_iface_wl_region_desc Description
|
|
*
|
|
* A region object describes an area.
|
|
*
|
|
* Region objects are used to describe the opaque and input
|
|
* regions of a surface.
|
|
* @section page_iface_wl_region_api API
|
|
* See @ref iface_wl_region.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_region The wl_region interface
|
|
*
|
|
* A region object describes an area.
|
|
*
|
|
* Region objects are used to describe the opaque and input
|
|
* regions of a surface.
|
|
*/
|
|
extern const struct wl_interface wl_region_interface;
|
|
/**
|
|
* @page page_iface_wl_subcompositor wl_subcompositor
|
|
* @section page_iface_wl_subcompositor_desc Description
|
|
*
|
|
* The global interface exposing sub-surface compositing capabilities.
|
|
* A wl_surface, that has sub-surfaces associated, is called the
|
|
* parent surface. Sub-surfaces can be arbitrarily nested and create
|
|
* a tree of sub-surfaces.
|
|
*
|
|
* The root surface in a tree of sub-surfaces is the main
|
|
* surface. The main surface cannot be a sub-surface, because
|
|
* sub-surfaces must always have a parent.
|
|
*
|
|
* A main surface with its sub-surfaces forms a (compound) window.
|
|
* For window management purposes, this set of wl_surface objects is
|
|
* to be considered as a single window, and it should also behave as
|
|
* such.
|
|
*
|
|
* The aim of sub-surfaces is to offload some of the compositing work
|
|
* within a window from clients to the compositor. A prime example is
|
|
* a video player with decorations and video in separate wl_surface
|
|
* objects. This should allow the compositor to pass YUV video buffer
|
|
* processing to dedicated overlay hardware when possible.
|
|
* @section page_iface_wl_subcompositor_api API
|
|
* See @ref iface_wl_subcompositor.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_subcompositor The wl_subcompositor interface
|
|
*
|
|
* The global interface exposing sub-surface compositing capabilities.
|
|
* A wl_surface, that has sub-surfaces associated, is called the
|
|
* parent surface. Sub-surfaces can be arbitrarily nested and create
|
|
* a tree of sub-surfaces.
|
|
*
|
|
* The root surface in a tree of sub-surfaces is the main
|
|
* surface. The main surface cannot be a sub-surface, because
|
|
* sub-surfaces must always have a parent.
|
|
*
|
|
* A main surface with its sub-surfaces forms a (compound) window.
|
|
* For window management purposes, this set of wl_surface objects is
|
|
* to be considered as a single window, and it should also behave as
|
|
* such.
|
|
*
|
|
* The aim of sub-surfaces is to offload some of the compositing work
|
|
* within a window from clients to the compositor. A prime example is
|
|
* a video player with decorations and video in separate wl_surface
|
|
* objects. This should allow the compositor to pass YUV video buffer
|
|
* processing to dedicated overlay hardware when possible.
|
|
*/
|
|
extern const struct wl_interface wl_subcompositor_interface;
|
|
/**
|
|
* @page page_iface_wl_subsurface wl_subsurface
|
|
* @section page_iface_wl_subsurface_desc Description
|
|
*
|
|
* An additional interface to a wl_surface object, which has been
|
|
* made a sub-surface. A sub-surface has one parent surface. A
|
|
* sub-surface's size and position are not limited to that of the parent.
|
|
* Particularly, a sub-surface is not automatically clipped to its
|
|
* parent's area.
|
|
*
|
|
* A sub-surface becomes mapped, when a non-NULL wl_buffer is applied
|
|
* and the parent surface is mapped. The order of which one happens
|
|
* first is irrelevant. A sub-surface is hidden if the parent becomes
|
|
* hidden, or if a NULL wl_buffer is applied. These rules apply
|
|
* recursively through the tree of surfaces.
|
|
*
|
|
* The behaviour of a wl_surface.commit request on a sub-surface
|
|
* depends on the sub-surface's mode. The possible modes are
|
|
* synchronized and desynchronized, see methods
|
|
* wl_subsurface.set_sync and wl_subsurface.set_desync. Synchronized
|
|
* mode caches the wl_surface state to be applied when the parent's
|
|
* state gets applied, and desynchronized mode applies the pending
|
|
* wl_surface state directly. A sub-surface is initially in the
|
|
* synchronized mode.
|
|
*
|
|
* Sub-surfaces have also other kind of state, which is managed by
|
|
* wl_subsurface requests, as opposed to wl_surface requests. This
|
|
* state includes the sub-surface position relative to the parent
|
|
* surface (wl_subsurface.set_position), and the stacking order of
|
|
* the parent and its sub-surfaces (wl_subsurface.place_above and
|
|
* .place_below). This state is applied when the parent surface's
|
|
* wl_surface state is applied, regardless of the sub-surface's mode.
|
|
* As the exception, set_sync and set_desync are effective immediately.
|
|
*
|
|
* The main surface can be thought to be always in desynchronized mode,
|
|
* since it does not have a parent in the sub-surfaces sense.
|
|
*
|
|
* Even if a sub-surface is in desynchronized mode, it will behave as
|
|
* in synchronized mode, if its parent surface behaves as in
|
|
* synchronized mode. This rule is applied recursively throughout the
|
|
* tree of surfaces. This means, that one can set a sub-surface into
|
|
* synchronized mode, and then assume that all its child and grand-child
|
|
* sub-surfaces are synchronized, too, without explicitly setting them.
|
|
*
|
|
* If the wl_surface associated with the wl_subsurface is destroyed, the
|
|
* wl_subsurface object becomes inert. Note, that destroying either object
|
|
* takes effect immediately. If you need to synchronize the removal
|
|
* of a sub-surface to the parent surface update, unmap the sub-surface
|
|
* first by attaching a NULL wl_buffer, update parent, and then destroy
|
|
* the sub-surface.
|
|
*
|
|
* If the parent wl_surface object is destroyed, the sub-surface is
|
|
* unmapped.
|
|
* @section page_iface_wl_subsurface_api API
|
|
* See @ref iface_wl_subsurface.
|
|
*/
|
|
/**
|
|
* @defgroup iface_wl_subsurface The wl_subsurface interface
|
|
*
|
|
* An additional interface to a wl_surface object, which has been
|
|
* made a sub-surface. A sub-surface has one parent surface. A
|
|
* sub-surface's size and position are not limited to that of the parent.
|
|
* Particularly, a sub-surface is not automatically clipped to its
|
|
* parent's area.
|
|
*
|
|
* A sub-surface becomes mapped, when a non-NULL wl_buffer is applied
|
|
* and the parent surface is mapped. The order of which one happens
|
|
* first is irrelevant. A sub-surface is hidden if the parent becomes
|
|
* hidden, or if a NULL wl_buffer is applied. These rules apply
|
|
* recursively through the tree of surfaces.
|
|
*
|
|
* The behaviour of a wl_surface.commit request on a sub-surface
|
|
* depends on the sub-surface's mode. The possible modes are
|
|
* synchronized and desynchronized, see methods
|
|
* wl_subsurface.set_sync and wl_subsurface.set_desync. Synchronized
|
|
* mode caches the wl_surface state to be applied when the parent's
|
|
* state gets applied, and desynchronized mode applies the pending
|
|
* wl_surface state directly. A sub-surface is initially in the
|
|
* synchronized mode.
|
|
*
|
|
* Sub-surfaces have also other kind of state, which is managed by
|
|
* wl_subsurface requests, as opposed to wl_surface requests. This
|
|
* state includes the sub-surface position relative to the parent
|
|
* surface (wl_subsurface.set_position), and the stacking order of
|
|
* the parent and its sub-surfaces (wl_subsurface.place_above and
|
|
* .place_below). This state is applied when the parent surface's
|
|
* wl_surface state is applied, regardless of the sub-surface's mode.
|
|
* As the exception, set_sync and set_desync are effective immediately.
|
|
*
|
|
* The main surface can be thought to be always in desynchronized mode,
|
|
* since it does not have a parent in the sub-surfaces sense.
|
|
*
|
|
* Even if a sub-surface is in desynchronized mode, it will behave as
|
|
* in synchronized mode, if its parent surface behaves as in
|
|
* synchronized mode. This rule is applied recursively throughout the
|
|
* tree of surfaces. This means, that one can set a sub-surface into
|
|
* synchronized mode, and then assume that all its child and grand-child
|
|
* sub-surfaces are synchronized, too, without explicitly setting them.
|
|
*
|
|
* If the wl_surface associated with the wl_subsurface is destroyed, the
|
|
* wl_subsurface object becomes inert. Note, that destroying either object
|
|
* takes effect immediately. If you need to synchronize the removal
|
|
* of a sub-surface to the parent surface update, unmap the sub-surface
|
|
* first by attaching a NULL wl_buffer, update parent, and then destroy
|
|
* the sub-surface.
|
|
*
|
|
* If the parent wl_surface object is destroyed, the sub-surface is
|
|
* unmapped.
|
|
*/
|
|
extern const struct wl_interface wl_subsurface_interface;
|
|
|
|
#ifndef WL_DISPLAY_ERROR_ENUM
|
|
#define WL_DISPLAY_ERROR_ENUM
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
* global error values
|
|
*
|
|
* These errors are global and can be emitted in response to any
|
|
* server request.
|
|
*/
|
|
enum wl_display_error {
|
|
/**
|
|
* server couldn't find object
|
|
*/
|
|
WL_DISPLAY_ERROR_INVALID_OBJECT = 0,
|
|
/**
|
|
* method doesn't exist on the specified interface
|
|
*/
|
|
WL_DISPLAY_ERROR_INVALID_METHOD = 1,
|
|
/**
|
|
* server is out of memory
|
|
*/
|
|
WL_DISPLAY_ERROR_NO_MEMORY = 2,
|
|
};
|
|
#endif /* WL_DISPLAY_ERROR_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
* @struct wl_display_listener
|
|
*/
|
|
struct wl_display_listener {
|
|
/**
|
|
* fatal error event
|
|
*
|
|
* The error event is sent out when a fatal (non-recoverable)
|
|
* error has occurred. The object_id argument is the object where
|
|
* the error occurred, most often in response to a request to that
|
|
* object. The code identifies the error and is defined by the
|
|
* object interface. As such, each interface defines its own set of
|
|
* error codes. The message is a brief description of the error,
|
|
* for (debugging) convenience.
|
|
* @param object_id object where the error occurred
|
|
* @param code error code
|
|
* @param message error description
|
|
*/
|
|
void (*error)(void *data,
|
|
struct wl_display *wl_display,
|
|
void *object_id,
|
|
uint32_t code,
|
|
const char *message);
|
|
/**
|
|
* acknowledge object ID deletion
|
|
*
|
|
* This event is used internally by the object ID management
|
|
* logic. When a client deletes an object, the server will send
|
|
* this event to acknowledge that it has seen the delete request.
|
|
* When the client receives this event, it will know that it can
|
|
* safely reuse the object ID.
|
|
* @param id deleted object ID
|
|
*/
|
|
void (*delete_id)(void *data,
|
|
struct wl_display *wl_display,
|
|
uint32_t id);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
*/
|
|
static inline int
|
|
wl_display_add_listener(struct wl_display *wl_display,
|
|
const struct wl_display_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_display,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_DISPLAY_SYNC 0
|
|
#define WL_DISPLAY_GET_REGISTRY 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
*/
|
|
#define WL_DISPLAY_ERROR_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
*/
|
|
#define WL_DISPLAY_DELETE_ID_SINCE_VERSION 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
*/
|
|
#define WL_DISPLAY_SYNC_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
*/
|
|
#define WL_DISPLAY_GET_REGISTRY_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_display */
|
|
static inline void
|
|
wl_display_set_user_data(struct wl_display *wl_display, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_display, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_display */
|
|
static inline void *
|
|
wl_display_get_user_data(struct wl_display *wl_display)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_display);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_display_get_version(struct wl_display *wl_display)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_display);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
*
|
|
* The sync request asks the server to emit the 'done' event
|
|
* on the returned wl_callback object. Since requests are
|
|
* handled in-order and events are delivered in-order, this can
|
|
* be used as a barrier to ensure all previous requests and the
|
|
* resulting events have been handled.
|
|
*
|
|
* The object returned by this request will be destroyed by the
|
|
* compositor after the callback is fired and as such the client must not
|
|
* attempt to use it after that point.
|
|
*
|
|
* The callback_data passed in the callback is the event serial.
|
|
*/
|
|
static inline struct wl_callback *
|
|
wl_display_sync(struct wl_display *wl_display)
|
|
{
|
|
struct wl_proxy *callback;
|
|
|
|
callback = wl_proxy_marshal_constructor((struct wl_proxy *) wl_display,
|
|
WL_DISPLAY_SYNC, &wl_callback_interface, NULL);
|
|
|
|
return (struct wl_callback *) callback;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_display
|
|
*
|
|
* This request creates a registry object that allows the client
|
|
* to list and bind the global objects available from the
|
|
* compositor.
|
|
*/
|
|
static inline struct wl_registry *
|
|
wl_display_get_registry(struct wl_display *wl_display)
|
|
{
|
|
struct wl_proxy *registry;
|
|
|
|
registry = wl_proxy_marshal_constructor((struct wl_proxy *) wl_display,
|
|
WL_DISPLAY_GET_REGISTRY, &wl_registry_interface, NULL);
|
|
|
|
return (struct wl_registry *) registry;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_registry
|
|
* @struct wl_registry_listener
|
|
*/
|
|
struct wl_registry_listener {
|
|
/**
|
|
* announce global object
|
|
*
|
|
* Notify the client of global objects.
|
|
*
|
|
* The event notifies the client that a global object with the
|
|
* given name is now available, and it implements the given version
|
|
* of the given interface.
|
|
* @param name numeric name of the global object
|
|
* @param interface interface implemented by the object
|
|
* @param version interface version
|
|
*/
|
|
void (*global)(void *data,
|
|
struct wl_registry *wl_registry,
|
|
uint32_t name,
|
|
const char *interface,
|
|
uint32_t version);
|
|
/**
|
|
* announce removal of global object
|
|
*
|
|
* Notify the client of removed global objects.
|
|
*
|
|
* This event notifies the client that the global identified by
|
|
* name is no longer available. If the client bound to the global
|
|
* using the bind request, the client should now destroy that
|
|
* object.
|
|
*
|
|
* The object remains valid and requests to the object will be
|
|
* ignored until the client destroys it, to avoid races between the
|
|
* global going away and a client sending a request to it.
|
|
* @param name numeric name of the global object
|
|
*/
|
|
void (*global_remove)(void *data,
|
|
struct wl_registry *wl_registry,
|
|
uint32_t name);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_registry
|
|
*/
|
|
static inline int
|
|
wl_registry_add_listener(struct wl_registry *wl_registry,
|
|
const struct wl_registry_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_registry,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_REGISTRY_BIND 0
|
|
|
|
/**
|
|
* @ingroup iface_wl_registry
|
|
*/
|
|
#define WL_REGISTRY_GLOBAL_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_registry
|
|
*/
|
|
#define WL_REGISTRY_GLOBAL_REMOVE_SINCE_VERSION 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_registry
|
|
*/
|
|
#define WL_REGISTRY_BIND_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_registry */
|
|
static inline void
|
|
wl_registry_set_user_data(struct wl_registry *wl_registry, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_registry, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_registry */
|
|
static inline void *
|
|
wl_registry_get_user_data(struct wl_registry *wl_registry)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_registry);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_registry_get_version(struct wl_registry *wl_registry)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_registry);
|
|
}
|
|
|
|
/** @ingroup iface_wl_registry */
|
|
static inline void
|
|
wl_registry_destroy(struct wl_registry *wl_registry)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_registry);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_registry
|
|
*
|
|
* Binds a new, client-created object to the server using the
|
|
* specified name as the identifier.
|
|
*/
|
|
static inline void *
|
|
wl_registry_bind(struct wl_registry *wl_registry, uint32_t name, const struct wl_interface *interface, uint32_t version)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor_versioned((struct wl_proxy *) wl_registry,
|
|
WL_REGISTRY_BIND, interface, version, name, interface->name, version, NULL);
|
|
|
|
return (void *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_callback
|
|
* @struct wl_callback_listener
|
|
*/
|
|
struct wl_callback_listener {
|
|
/**
|
|
* done event
|
|
*
|
|
* Notify the client when the related request is done.
|
|
* @param callback_data request-specific data for the callback
|
|
*/
|
|
void (*done)(void *data,
|
|
struct wl_callback *wl_callback,
|
|
uint32_t callback_data);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_callback
|
|
*/
|
|
static inline int
|
|
wl_callback_add_listener(struct wl_callback *wl_callback,
|
|
const struct wl_callback_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_callback,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_callback
|
|
*/
|
|
#define WL_CALLBACK_DONE_SINCE_VERSION 1
|
|
|
|
|
|
/** @ingroup iface_wl_callback */
|
|
static inline void
|
|
wl_callback_set_user_data(struct wl_callback *wl_callback, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_callback, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_callback */
|
|
static inline void *
|
|
wl_callback_get_user_data(struct wl_callback *wl_callback)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_callback);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_callback_get_version(struct wl_callback *wl_callback)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_callback);
|
|
}
|
|
|
|
/** @ingroup iface_wl_callback */
|
|
static inline void
|
|
wl_callback_destroy(struct wl_callback *wl_callback)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_callback);
|
|
}
|
|
|
|
#define WL_COMPOSITOR_CREATE_SURFACE 0
|
|
#define WL_COMPOSITOR_CREATE_REGION 1
|
|
|
|
|
|
/**
|
|
* @ingroup iface_wl_compositor
|
|
*/
|
|
#define WL_COMPOSITOR_CREATE_SURFACE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_compositor
|
|
*/
|
|
#define WL_COMPOSITOR_CREATE_REGION_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_compositor */
|
|
static inline void
|
|
wl_compositor_set_user_data(struct wl_compositor *wl_compositor, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_compositor, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_compositor */
|
|
static inline void *
|
|
wl_compositor_get_user_data(struct wl_compositor *wl_compositor)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_compositor);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_compositor_get_version(struct wl_compositor *wl_compositor)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_compositor);
|
|
}
|
|
|
|
/** @ingroup iface_wl_compositor */
|
|
static inline void
|
|
wl_compositor_destroy(struct wl_compositor *wl_compositor)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_compositor);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_compositor
|
|
*
|
|
* Ask the compositor to create a new surface.
|
|
*/
|
|
static inline struct wl_surface *
|
|
wl_compositor_create_surface(struct wl_compositor *wl_compositor)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_compositor,
|
|
WL_COMPOSITOR_CREATE_SURFACE, &wl_surface_interface, NULL);
|
|
|
|
return (struct wl_surface *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_compositor
|
|
*
|
|
* Ask the compositor to create a new region.
|
|
*/
|
|
static inline struct wl_region *
|
|
wl_compositor_create_region(struct wl_compositor *wl_compositor)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_compositor,
|
|
WL_COMPOSITOR_CREATE_REGION, &wl_region_interface, NULL);
|
|
|
|
return (struct wl_region *) id;
|
|
}
|
|
|
|
#define WL_SHM_POOL_CREATE_BUFFER 0
|
|
#define WL_SHM_POOL_DESTROY 1
|
|
#define WL_SHM_POOL_RESIZE 2
|
|
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm_pool
|
|
*/
|
|
#define WL_SHM_POOL_CREATE_BUFFER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shm_pool
|
|
*/
|
|
#define WL_SHM_POOL_DESTROY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shm_pool
|
|
*/
|
|
#define WL_SHM_POOL_RESIZE_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_shm_pool */
|
|
static inline void
|
|
wl_shm_pool_set_user_data(struct wl_shm_pool *wl_shm_pool, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_shm_pool, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_shm_pool */
|
|
static inline void *
|
|
wl_shm_pool_get_user_data(struct wl_shm_pool *wl_shm_pool)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_shm_pool);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_shm_pool_get_version(struct wl_shm_pool *wl_shm_pool)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_shm_pool);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm_pool
|
|
*
|
|
* Create a wl_buffer object from the pool.
|
|
*
|
|
* The buffer is created offset bytes into the pool and has
|
|
* width and height as specified. The stride argument specifies
|
|
* the number of bytes from the beginning of one row to the beginning
|
|
* of the next. The format is the pixel format of the buffer and
|
|
* must be one of those advertised through the wl_shm.format event.
|
|
*
|
|
* A buffer will keep a reference to the pool it was created from
|
|
* so it is valid to destroy the pool immediately after creating
|
|
* a buffer from it.
|
|
*/
|
|
static inline struct wl_buffer *
|
|
wl_shm_pool_create_buffer(struct wl_shm_pool *wl_shm_pool, int32_t offset, int32_t width, int32_t height, int32_t stride, uint32_t format)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_shm_pool,
|
|
WL_SHM_POOL_CREATE_BUFFER, &wl_buffer_interface, NULL, offset, width, height, stride, format);
|
|
|
|
return (struct wl_buffer *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm_pool
|
|
*
|
|
* Destroy the shared memory pool.
|
|
*
|
|
* The mmapped memory will be released when all
|
|
* buffers that have been created from this pool
|
|
* are gone.
|
|
*/
|
|
static inline void
|
|
wl_shm_pool_destroy(struct wl_shm_pool *wl_shm_pool)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shm_pool,
|
|
WL_SHM_POOL_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_shm_pool);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm_pool
|
|
*
|
|
* This request will cause the server to remap the backing memory
|
|
* for the pool from the file descriptor passed when the pool was
|
|
* created, but using the new size. This request can only be
|
|
* used to make the pool bigger.
|
|
*/
|
|
static inline void
|
|
wl_shm_pool_resize(struct wl_shm_pool *wl_shm_pool, int32_t size)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shm_pool,
|
|
WL_SHM_POOL_RESIZE, size);
|
|
}
|
|
|
|
#ifndef WL_SHM_ERROR_ENUM
|
|
#define WL_SHM_ERROR_ENUM
|
|
/**
|
|
* @ingroup iface_wl_shm
|
|
* wl_shm error values
|
|
*
|
|
* These errors can be emitted in response to wl_shm requests.
|
|
*/
|
|
enum wl_shm_error {
|
|
/**
|
|
* buffer format is not known
|
|
*/
|
|
WL_SHM_ERROR_INVALID_FORMAT = 0,
|
|
/**
|
|
* invalid size or stride during pool or buffer creation
|
|
*/
|
|
WL_SHM_ERROR_INVALID_STRIDE = 1,
|
|
/**
|
|
* mmapping the file descriptor failed
|
|
*/
|
|
WL_SHM_ERROR_INVALID_FD = 2,
|
|
};
|
|
#endif /* WL_SHM_ERROR_ENUM */
|
|
|
|
#ifndef WL_SHM_FORMAT_ENUM
|
|
#define WL_SHM_FORMAT_ENUM
|
|
/**
|
|
* @ingroup iface_wl_shm
|
|
* pixel formats
|
|
*
|
|
* This describes the memory layout of an individual pixel.
|
|
*
|
|
* All renderers should support argb8888 and xrgb8888 but any other
|
|
* formats are optional and may not be supported by the particular
|
|
* renderer in use.
|
|
*
|
|
* The drm format codes match the macros defined in drm_fourcc.h.
|
|
* The formats actually supported by the compositor will be
|
|
* reported by the format event.
|
|
*/
|
|
enum wl_shm_format {
|
|
/**
|
|
* 32-bit ARGB format, [31:0] A:R:G:B 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ARGB8888 = 0,
|
|
/**
|
|
* 32-bit RGB format, [31:0] x:R:G:B 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XRGB8888 = 1,
|
|
/**
|
|
* 8-bit color index format, [7:0] C
|
|
*/
|
|
WL_SHM_FORMAT_C8 = 0x20203843,
|
|
/**
|
|
* 8-bit RGB format, [7:0] R:G:B 3:3:2
|
|
*/
|
|
WL_SHM_FORMAT_RGB332 = 0x38424752,
|
|
/**
|
|
* 8-bit BGR format, [7:0] B:G:R 2:3:3
|
|
*/
|
|
WL_SHM_FORMAT_BGR233 = 0x38524742,
|
|
/**
|
|
* 16-bit xRGB format, [15:0] x:R:G:B 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XRGB4444 = 0x32315258,
|
|
/**
|
|
* 16-bit xBGR format, [15:0] x:B:G:R 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XBGR4444 = 0x32314258,
|
|
/**
|
|
* 16-bit RGBx format, [15:0] R:G:B:x 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBX4444 = 0x32315852,
|
|
/**
|
|
* 16-bit BGRx format, [15:0] B:G:R:x 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRX4444 = 0x32315842,
|
|
/**
|
|
* 16-bit ARGB format, [15:0] A:R:G:B 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ARGB4444 = 0x32315241,
|
|
/**
|
|
* 16-bit ABGR format, [15:0] A:B:G:R 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ABGR4444 = 0x32314241,
|
|
/**
|
|
* 16-bit RBGA format, [15:0] R:G:B:A 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBA4444 = 0x32314152,
|
|
/**
|
|
* 16-bit BGRA format, [15:0] B:G:R:A 4:4:4:4 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRA4444 = 0x32314142,
|
|
/**
|
|
* 16-bit xRGB format, [15:0] x:R:G:B 1:5:5:5 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XRGB1555 = 0x35315258,
|
|
/**
|
|
* 16-bit xBGR 1555 format, [15:0] x:B:G:R 1:5:5:5 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XBGR1555 = 0x35314258,
|
|
/**
|
|
* 16-bit RGBx 5551 format, [15:0] R:G:B:x 5:5:5:1 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBX5551 = 0x35315852,
|
|
/**
|
|
* 16-bit BGRx 5551 format, [15:0] B:G:R:x 5:5:5:1 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRX5551 = 0x35315842,
|
|
/**
|
|
* 16-bit ARGB 1555 format, [15:0] A:R:G:B 1:5:5:5 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ARGB1555 = 0x35315241,
|
|
/**
|
|
* 16-bit ABGR 1555 format, [15:0] A:B:G:R 1:5:5:5 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ABGR1555 = 0x35314241,
|
|
/**
|
|
* 16-bit RGBA 5551 format, [15:0] R:G:B:A 5:5:5:1 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBA5551 = 0x35314152,
|
|
/**
|
|
* 16-bit BGRA 5551 format, [15:0] B:G:R:A 5:5:5:1 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRA5551 = 0x35314142,
|
|
/**
|
|
* 16-bit RGB 565 format, [15:0] R:G:B 5:6:5 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGB565 = 0x36314752,
|
|
/**
|
|
* 16-bit BGR 565 format, [15:0] B:G:R 5:6:5 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGR565 = 0x36314742,
|
|
/**
|
|
* 24-bit RGB format, [23:0] R:G:B little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGB888 = 0x34324752,
|
|
/**
|
|
* 24-bit BGR format, [23:0] B:G:R little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGR888 = 0x34324742,
|
|
/**
|
|
* 32-bit xBGR format, [31:0] x:B:G:R 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XBGR8888 = 0x34324258,
|
|
/**
|
|
* 32-bit RGBx format, [31:0] R:G:B:x 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBX8888 = 0x34325852,
|
|
/**
|
|
* 32-bit BGRx format, [31:0] B:G:R:x 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRX8888 = 0x34325842,
|
|
/**
|
|
* 32-bit ABGR format, [31:0] A:B:G:R 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ABGR8888 = 0x34324241,
|
|
/**
|
|
* 32-bit RGBA format, [31:0] R:G:B:A 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBA8888 = 0x34324152,
|
|
/**
|
|
* 32-bit BGRA format, [31:0] B:G:R:A 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRA8888 = 0x34324142,
|
|
/**
|
|
* 32-bit xRGB format, [31:0] x:R:G:B 2:10:10:10 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XRGB2101010 = 0x30335258,
|
|
/**
|
|
* 32-bit xBGR format, [31:0] x:B:G:R 2:10:10:10 little endian
|
|
*/
|
|
WL_SHM_FORMAT_XBGR2101010 = 0x30334258,
|
|
/**
|
|
* 32-bit RGBx format, [31:0] R:G:B:x 10:10:10:2 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBX1010102 = 0x30335852,
|
|
/**
|
|
* 32-bit BGRx format, [31:0] B:G:R:x 10:10:10:2 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRX1010102 = 0x30335842,
|
|
/**
|
|
* 32-bit ARGB format, [31:0] A:R:G:B 2:10:10:10 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ARGB2101010 = 0x30335241,
|
|
/**
|
|
* 32-bit ABGR format, [31:0] A:B:G:R 2:10:10:10 little endian
|
|
*/
|
|
WL_SHM_FORMAT_ABGR2101010 = 0x30334241,
|
|
/**
|
|
* 32-bit RGBA format, [31:0] R:G:B:A 10:10:10:2 little endian
|
|
*/
|
|
WL_SHM_FORMAT_RGBA1010102 = 0x30334152,
|
|
/**
|
|
* 32-bit BGRA format, [31:0] B:G:R:A 10:10:10:2 little endian
|
|
*/
|
|
WL_SHM_FORMAT_BGRA1010102 = 0x30334142,
|
|
/**
|
|
* packed YCbCr format, [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_YUYV = 0x56595559,
|
|
/**
|
|
* packed YCbCr format, [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_YVYU = 0x55595659,
|
|
/**
|
|
* packed YCbCr format, [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_UYVY = 0x59565955,
|
|
/**
|
|
* packed YCbCr format, [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_VYUY = 0x59555956,
|
|
/**
|
|
* packed AYCbCr format, [31:0] A:Y:Cb:Cr 8:8:8:8 little endian
|
|
*/
|
|
WL_SHM_FORMAT_AYUV = 0x56555941,
|
|
/**
|
|
* 2 plane YCbCr Cr:Cb format, 2x2 subsampled Cr:Cb plane
|
|
*/
|
|
WL_SHM_FORMAT_NV12 = 0x3231564e,
|
|
/**
|
|
* 2 plane YCbCr Cb:Cr format, 2x2 subsampled Cb:Cr plane
|
|
*/
|
|
WL_SHM_FORMAT_NV21 = 0x3132564e,
|
|
/**
|
|
* 2 plane YCbCr Cr:Cb format, 2x1 subsampled Cr:Cb plane
|
|
*/
|
|
WL_SHM_FORMAT_NV16 = 0x3631564e,
|
|
/**
|
|
* 2 plane YCbCr Cb:Cr format, 2x1 subsampled Cb:Cr plane
|
|
*/
|
|
WL_SHM_FORMAT_NV61 = 0x3136564e,
|
|
/**
|
|
* 3 plane YCbCr format, 4x4 subsampled Cb (1) and Cr (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YUV410 = 0x39565559,
|
|
/**
|
|
* 3 plane YCbCr format, 4x4 subsampled Cr (1) and Cb (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YVU410 = 0x39555659,
|
|
/**
|
|
* 3 plane YCbCr format, 4x1 subsampled Cb (1) and Cr (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YUV411 = 0x31315559,
|
|
/**
|
|
* 3 plane YCbCr format, 4x1 subsampled Cr (1) and Cb (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YVU411 = 0x31315659,
|
|
/**
|
|
* 3 plane YCbCr format, 2x2 subsampled Cb (1) and Cr (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YUV420 = 0x32315559,
|
|
/**
|
|
* 3 plane YCbCr format, 2x2 subsampled Cr (1) and Cb (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YVU420 = 0x32315659,
|
|
/**
|
|
* 3 plane YCbCr format, 2x1 subsampled Cb (1) and Cr (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YUV422 = 0x36315559,
|
|
/**
|
|
* 3 plane YCbCr format, 2x1 subsampled Cr (1) and Cb (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YVU422 = 0x36315659,
|
|
/**
|
|
* 3 plane YCbCr format, non-subsampled Cb (1) and Cr (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YUV444 = 0x34325559,
|
|
/**
|
|
* 3 plane YCbCr format, non-subsampled Cr (1) and Cb (2) planes
|
|
*/
|
|
WL_SHM_FORMAT_YVU444 = 0x34325659,
|
|
};
|
|
#endif /* WL_SHM_FORMAT_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm
|
|
* @struct wl_shm_listener
|
|
*/
|
|
struct wl_shm_listener {
|
|
/**
|
|
* pixel format description
|
|
*
|
|
* Informs the client about a valid pixel format that can be used
|
|
* for buffers. Known formats include argb8888 and xrgb8888.
|
|
* @param format buffer pixel format
|
|
*/
|
|
void (*format)(void *data,
|
|
struct wl_shm *wl_shm,
|
|
uint32_t format);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm
|
|
*/
|
|
static inline int
|
|
wl_shm_add_listener(struct wl_shm *wl_shm,
|
|
const struct wl_shm_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_shm,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_SHM_CREATE_POOL 0
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm
|
|
*/
|
|
#define WL_SHM_FORMAT_SINCE_VERSION 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm
|
|
*/
|
|
#define WL_SHM_CREATE_POOL_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_shm */
|
|
static inline void
|
|
wl_shm_set_user_data(struct wl_shm *wl_shm, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_shm, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_shm */
|
|
static inline void *
|
|
wl_shm_get_user_data(struct wl_shm *wl_shm)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_shm);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_shm_get_version(struct wl_shm *wl_shm)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_shm);
|
|
}
|
|
|
|
/** @ingroup iface_wl_shm */
|
|
static inline void
|
|
wl_shm_destroy(struct wl_shm *wl_shm)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_shm);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shm
|
|
*
|
|
* Create a new wl_shm_pool object.
|
|
*
|
|
* The pool can be used to create shared memory based buffer
|
|
* objects. The server will mmap size bytes of the passed file
|
|
* descriptor, to use as backing memory for the pool.
|
|
*/
|
|
static inline struct wl_shm_pool *
|
|
wl_shm_create_pool(struct wl_shm *wl_shm, int32_t fd, int32_t size)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_shm,
|
|
WL_SHM_CREATE_POOL, &wl_shm_pool_interface, NULL, fd, size);
|
|
|
|
return (struct wl_shm_pool *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_buffer
|
|
* @struct wl_buffer_listener
|
|
*/
|
|
struct wl_buffer_listener {
|
|
/**
|
|
* compositor releases buffer
|
|
*
|
|
* Sent when this wl_buffer is no longer used by the compositor.
|
|
* The client is now free to reuse or destroy this buffer and its
|
|
* backing storage.
|
|
*
|
|
* If a client receives a release event before the frame callback
|
|
* requested in the same wl_surface.commit that attaches this
|
|
* wl_buffer to a surface, then the client is immediately free to
|
|
* reuse the buffer and its backing storage, and does not need a
|
|
* second buffer for the next surface content update. Typically
|
|
* this is possible, when the compositor maintains a copy of the
|
|
* wl_surface contents, e.g. as a GL texture. This is an important
|
|
* optimization for GL(ES) compositors with wl_shm clients.
|
|
*/
|
|
void (*release)(void *data,
|
|
struct wl_buffer *wl_buffer);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_buffer
|
|
*/
|
|
static inline int
|
|
wl_buffer_add_listener(struct wl_buffer *wl_buffer,
|
|
const struct wl_buffer_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_buffer,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_BUFFER_DESTROY 0
|
|
|
|
/**
|
|
* @ingroup iface_wl_buffer
|
|
*/
|
|
#define WL_BUFFER_RELEASE_SINCE_VERSION 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_buffer
|
|
*/
|
|
#define WL_BUFFER_DESTROY_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_buffer */
|
|
static inline void
|
|
wl_buffer_set_user_data(struct wl_buffer *wl_buffer, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_buffer, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_buffer */
|
|
static inline void *
|
|
wl_buffer_get_user_data(struct wl_buffer *wl_buffer)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_buffer);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_buffer_get_version(struct wl_buffer *wl_buffer)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_buffer);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_buffer
|
|
*
|
|
* Destroy a buffer. If and how you need to release the backing
|
|
* storage is defined by the buffer factory interface.
|
|
*
|
|
* For possible side-effects to a surface, see wl_surface.attach.
|
|
*/
|
|
static inline void
|
|
wl_buffer_destroy(struct wl_buffer *wl_buffer)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_buffer,
|
|
WL_BUFFER_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_buffer);
|
|
}
|
|
|
|
#ifndef WL_DATA_OFFER_ERROR_ENUM
|
|
#define WL_DATA_OFFER_ERROR_ENUM
|
|
enum wl_data_offer_error {
|
|
/**
|
|
* finish request was called untimely
|
|
*/
|
|
WL_DATA_OFFER_ERROR_INVALID_FINISH = 0,
|
|
/**
|
|
* action mask contains invalid values
|
|
*/
|
|
WL_DATA_OFFER_ERROR_INVALID_ACTION_MASK = 1,
|
|
/**
|
|
* action argument has an invalid value
|
|
*/
|
|
WL_DATA_OFFER_ERROR_INVALID_ACTION = 2,
|
|
/**
|
|
* offer doesn't accept this request
|
|
*/
|
|
WL_DATA_OFFER_ERROR_INVALID_OFFER = 3,
|
|
};
|
|
#endif /* WL_DATA_OFFER_ERROR_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
* @struct wl_data_offer_listener
|
|
*/
|
|
struct wl_data_offer_listener {
|
|
/**
|
|
* advertise offered mime type
|
|
*
|
|
* Sent immediately after creating the wl_data_offer object. One
|
|
* event per offered mime type.
|
|
* @param mime_type offered mime type
|
|
*/
|
|
void (*offer)(void *data,
|
|
struct wl_data_offer *wl_data_offer,
|
|
const char *mime_type);
|
|
/**
|
|
* notify the source-side available actions
|
|
*
|
|
* This event indicates the actions offered by the data source.
|
|
* It will be sent right after wl_data_device.enter, or anytime the
|
|
* source side changes its offered actions through
|
|
* wl_data_source.set_actions.
|
|
* @param source_actions actions offered by the data source
|
|
* @since 3
|
|
*/
|
|
void (*source_actions)(void *data,
|
|
struct wl_data_offer *wl_data_offer,
|
|
uint32_t source_actions);
|
|
/**
|
|
* notify the selected action
|
|
*
|
|
* This event indicates the action selected by the compositor
|
|
* after matching the source/destination side actions. Only one
|
|
* action (or none) will be offered here.
|
|
*
|
|
* This event can be emitted multiple times during the
|
|
* drag-and-drop operation in response to destination side action
|
|
* changes through wl_data_offer.set_actions.
|
|
*
|
|
* This event will no longer be emitted after wl_data_device.drop
|
|
* happened on the drag-and-drop destination, the client must honor
|
|
* the last action received, or the last preferred one set through
|
|
* wl_data_offer.set_actions when handling an "ask" action.
|
|
*
|
|
* Compositors may also change the selected action on the fly,
|
|
* mainly in response to keyboard modifier changes during the
|
|
* drag-and-drop operation.
|
|
*
|
|
* The most recent action received is always the valid one. Prior
|
|
* to receiving wl_data_device.drop, the chosen action may change
|
|
* (e.g. due to keyboard modifiers being pressed). At the time of
|
|
* receiving wl_data_device.drop the drag-and-drop destination must
|
|
* honor the last action received.
|
|
*
|
|
* Action changes may still happen after wl_data_device.drop,
|
|
* especially on "ask" actions, where the drag-and-drop destination
|
|
* may choose another action afterwards. Action changes happening
|
|
* at this stage are always the result of inter-client negotiation,
|
|
* the compositor shall no longer be able to induce a different
|
|
* action.
|
|
*
|
|
* Upon "ask" actions, it is expected that the drag-and-drop
|
|
* destination may potentially choose a different action and/or
|
|
* mime type, based on wl_data_offer.source_actions and finally
|
|
* chosen by the user (e.g. popping up a menu with the available
|
|
* options). The final wl_data_offer.set_actions and
|
|
* wl_data_offer.accept requests must happen before the call to
|
|
* wl_data_offer.finish.
|
|
* @param dnd_action action selected by the compositor
|
|
* @since 3
|
|
*/
|
|
void (*action)(void *data,
|
|
struct wl_data_offer *wl_data_offer,
|
|
uint32_t dnd_action);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
static inline int
|
|
wl_data_offer_add_listener(struct wl_data_offer *wl_data_offer,
|
|
const struct wl_data_offer_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_data_offer,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_DATA_OFFER_ACCEPT 0
|
|
#define WL_DATA_OFFER_RECEIVE 1
|
|
#define WL_DATA_OFFER_DESTROY 2
|
|
#define WL_DATA_OFFER_FINISH 3
|
|
#define WL_DATA_OFFER_SET_ACTIONS 4
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_OFFER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_SOURCE_ACTIONS_SINCE_VERSION 3
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_ACTION_SINCE_VERSION 3
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_ACCEPT_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_RECEIVE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_DESTROY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_FINISH_SINCE_VERSION 3
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*/
|
|
#define WL_DATA_OFFER_SET_ACTIONS_SINCE_VERSION 3
|
|
|
|
/** @ingroup iface_wl_data_offer */
|
|
static inline void
|
|
wl_data_offer_set_user_data(struct wl_data_offer *wl_data_offer, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_data_offer, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_data_offer */
|
|
static inline void *
|
|
wl_data_offer_get_user_data(struct wl_data_offer *wl_data_offer)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_data_offer);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_data_offer_get_version(struct wl_data_offer *wl_data_offer)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_data_offer);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*
|
|
* Indicate that the client can accept the given mime type, or
|
|
* NULL for not accepted.
|
|
*
|
|
* For objects of version 2 or older, this request is used by the
|
|
* client to give feedback whether the client can receive the given
|
|
* mime type, or NULL if none is accepted; the feedback does not
|
|
* determine whether the drag-and-drop operation succeeds or not.
|
|
*
|
|
* For objects of version 3 or newer, this request determines the
|
|
* final result of the drag-and-drop operation. If the end result
|
|
* is that no mime types were accepted, the drag-and-drop operation
|
|
* will be cancelled and the corresponding drag source will receive
|
|
* wl_data_source.cancelled. Clients may still use this event in
|
|
* conjunction with wl_data_source.action for feedback.
|
|
*/
|
|
static inline void
|
|
wl_data_offer_accept(struct wl_data_offer *wl_data_offer, uint32_t serial, const char *mime_type)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_offer,
|
|
WL_DATA_OFFER_ACCEPT, serial, mime_type);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*
|
|
* To transfer the offered data, the client issues this request
|
|
* and indicates the mime type it wants to receive. The transfer
|
|
* happens through the passed file descriptor (typically created
|
|
* with the pipe system call). The source client writes the data
|
|
* in the mime type representation requested and then closes the
|
|
* file descriptor.
|
|
*
|
|
* The receiving client reads from the read end of the pipe until
|
|
* EOF and then closes its end, at which point the transfer is
|
|
* complete.
|
|
*
|
|
* This request may happen multiple times for different mime types,
|
|
* both before and after wl_data_device.drop. Drag-and-drop destination
|
|
* clients may preemptively fetch data or examine it more closely to
|
|
* determine acceptance.
|
|
*/
|
|
static inline void
|
|
wl_data_offer_receive(struct wl_data_offer *wl_data_offer, const char *mime_type, int32_t fd)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_offer,
|
|
WL_DATA_OFFER_RECEIVE, mime_type, fd);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*
|
|
* Destroy the data offer.
|
|
*/
|
|
static inline void
|
|
wl_data_offer_destroy(struct wl_data_offer *wl_data_offer)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_offer,
|
|
WL_DATA_OFFER_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_data_offer);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*
|
|
* Notifies the compositor that the drag destination successfully
|
|
* finished the drag-and-drop operation.
|
|
*
|
|
* Upon receiving this request, the compositor will emit
|
|
* wl_data_source.dnd_finished on the drag source client.
|
|
*
|
|
* It is a client error to perform other requests than
|
|
* wl_data_offer.destroy after this one. It is also an error to perform
|
|
* this request after a NULL mime type has been set in
|
|
* wl_data_offer.accept or no action was received through
|
|
* wl_data_offer.action.
|
|
*/
|
|
static inline void
|
|
wl_data_offer_finish(struct wl_data_offer *wl_data_offer)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_offer,
|
|
WL_DATA_OFFER_FINISH);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_offer
|
|
*
|
|
* Sets the actions that the destination side client supports for
|
|
* this operation. This request may trigger the emission of
|
|
* wl_data_source.action and wl_data_offer.action events if the compositor
|
|
* needs to change the selected action.
|
|
*
|
|
* This request can be called multiple times throughout the
|
|
* drag-and-drop operation, typically in response to wl_data_device.enter
|
|
* or wl_data_device.motion events.
|
|
*
|
|
* This request determines the final result of the drag-and-drop
|
|
* operation. If the end result is that no action is accepted,
|
|
* the drag source will receive wl_drag_source.cancelled.
|
|
*
|
|
* The dnd_actions argument must contain only values expressed in the
|
|
* wl_data_device_manager.dnd_actions enum, and the preferred_action
|
|
* argument must only contain one of those values set, otherwise it
|
|
* will result in a protocol error.
|
|
*
|
|
* While managing an "ask" action, the destination drag-and-drop client
|
|
* may perform further wl_data_offer.receive requests, and is expected
|
|
* to perform one last wl_data_offer.set_actions request with a preferred
|
|
* action other than "ask" (and optionally wl_data_offer.accept) before
|
|
* requesting wl_data_offer.finish, in order to convey the action selected
|
|
* by the user. If the preferred action is not in the
|
|
* wl_data_offer.source_actions mask, an error will be raised.
|
|
*
|
|
* If the "ask" action is dismissed (e.g. user cancellation), the client
|
|
* is expected to perform wl_data_offer.destroy right away.
|
|
*
|
|
* This request can only be made on drag-and-drop offers, a protocol error
|
|
* will be raised otherwise.
|
|
*/
|
|
static inline void
|
|
wl_data_offer_set_actions(struct wl_data_offer *wl_data_offer, uint32_t dnd_actions, uint32_t preferred_action)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_offer,
|
|
WL_DATA_OFFER_SET_ACTIONS, dnd_actions, preferred_action);
|
|
}
|
|
|
|
#ifndef WL_DATA_SOURCE_ERROR_ENUM
|
|
#define WL_DATA_SOURCE_ERROR_ENUM
|
|
enum wl_data_source_error {
|
|
/**
|
|
* action mask contains invalid values
|
|
*/
|
|
WL_DATA_SOURCE_ERROR_INVALID_ACTION_MASK = 0,
|
|
/**
|
|
* source doesn't accept this request
|
|
*/
|
|
WL_DATA_SOURCE_ERROR_INVALID_SOURCE = 1,
|
|
};
|
|
#endif /* WL_DATA_SOURCE_ERROR_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
* @struct wl_data_source_listener
|
|
*/
|
|
struct wl_data_source_listener {
|
|
/**
|
|
* a target accepts an offered mime type
|
|
*
|
|
* Sent when a target accepts pointer_focus or motion events. If
|
|
* a target does not accept any of the offered types, type is NULL.
|
|
*
|
|
* Used for feedback during drag-and-drop.
|
|
* @param mime_type mime type accepted by the target
|
|
*/
|
|
void (*target)(void *data,
|
|
struct wl_data_source *wl_data_source,
|
|
const char *mime_type);
|
|
/**
|
|
* send the data
|
|
*
|
|
* Request for data from the client. Send the data as the
|
|
* specified mime type over the passed file descriptor, then close
|
|
* it.
|
|
* @param mime_type mime type for the data
|
|
* @param fd file descriptor for the data
|
|
*/
|
|
void (*send)(void *data,
|
|
struct wl_data_source *wl_data_source,
|
|
const char *mime_type,
|
|
int32_t fd);
|
|
/**
|
|
* selection was cancelled
|
|
*
|
|
* This data source is no longer valid. There are several reasons
|
|
* why this could happen:
|
|
*
|
|
* - The data source has been replaced by another data source. -
|
|
* The drag-and-drop operation was performed, but the drop
|
|
* destination did not accept any of the mime types offered through
|
|
* wl_data_source.target. - The drag-and-drop operation was
|
|
* performed, but the drop destination did not select any of the
|
|
* actions present in the mask offered through
|
|
* wl_data_source.action. - The drag-and-drop operation was
|
|
* performed but didn't happen over a surface. - The compositor
|
|
* cancelled the drag-and-drop operation (e.g. compositor dependent
|
|
* timeouts to avoid stale drag-and-drop transfers).
|
|
*
|
|
* The client should clean up and destroy this data source.
|
|
*
|
|
* For objects of version 2 or older, wl_data_source.cancelled will
|
|
* only be emitted if the data source was replaced by another data
|
|
* source.
|
|
*/
|
|
void (*cancelled)(void *data,
|
|
struct wl_data_source *wl_data_source);
|
|
/**
|
|
* the drag-and-drop operation physically finished
|
|
*
|
|
* The user performed the drop action. This event does not
|
|
* indicate acceptance, wl_data_source.cancelled may still be
|
|
* emitted afterwards if the drop destination does not accept any
|
|
* mime type.
|
|
*
|
|
* However, this event might however not be received if the
|
|
* compositor cancelled the drag-and-drop operation before this
|
|
* event could happen.
|
|
*
|
|
* Note that the data_source may still be used in the future and
|
|
* should not be destroyed here.
|
|
* @since 3
|
|
*/
|
|
void (*dnd_drop_performed)(void *data,
|
|
struct wl_data_source *wl_data_source);
|
|
/**
|
|
* the drag-and-drop operation concluded
|
|
*
|
|
* The drop destination finished interoperating with this data
|
|
* source, so the client is now free to destroy this data source
|
|
* and free all associated data.
|
|
*
|
|
* If the action used to perform the operation was "move", the
|
|
* source can now delete the transferred data.
|
|
* @since 3
|
|
*/
|
|
void (*dnd_finished)(void *data,
|
|
struct wl_data_source *wl_data_source);
|
|
/**
|
|
* notify the selected action
|
|
*
|
|
* This event indicates the action selected by the compositor
|
|
* after matching the source/destination side actions. Only one
|
|
* action (or none) will be offered here.
|
|
*
|
|
* This event can be emitted multiple times during the
|
|
* drag-and-drop operation, mainly in response to destination side
|
|
* changes through wl_data_offer.set_actions, and as the data
|
|
* device enters/leaves surfaces.
|
|
*
|
|
* It is only possible to receive this event after
|
|
* wl_data_source.dnd_drop_performed if the drag-and-drop operation
|
|
* ended in an "ask" action, in which case the final
|
|
* wl_data_source.action event will happen immediately before
|
|
* wl_data_source.dnd_finished.
|
|
*
|
|
* Compositors may also change the selected action on the fly,
|
|
* mainly in response to keyboard modifier changes during the
|
|
* drag-and-drop operation.
|
|
*
|
|
* The most recent action received is always the valid one. The
|
|
* chosen action may change alongside negotiation (e.g. an "ask"
|
|
* action can turn into a "move" operation), so the effects of the
|
|
* final action must always be applied in
|
|
* wl_data_offer.dnd_finished.
|
|
*
|
|
* Clients can trigger cursor surface changes from this point, so
|
|
* they reflect the current action.
|
|
* @param dnd_action action selected by the compositor
|
|
* @since 3
|
|
*/
|
|
void (*action)(void *data,
|
|
struct wl_data_source *wl_data_source,
|
|
uint32_t dnd_action);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
static inline int
|
|
wl_data_source_add_listener(struct wl_data_source *wl_data_source,
|
|
const struct wl_data_source_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_data_source,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_DATA_SOURCE_OFFER 0
|
|
#define WL_DATA_SOURCE_DESTROY 1
|
|
#define WL_DATA_SOURCE_SET_ACTIONS 2
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_TARGET_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_SEND_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_CANCELLED_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_DND_DROP_PERFORMED_SINCE_VERSION 3
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_DND_FINISHED_SINCE_VERSION 3
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_ACTION_SINCE_VERSION 3
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_OFFER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_DESTROY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*/
|
|
#define WL_DATA_SOURCE_SET_ACTIONS_SINCE_VERSION 3
|
|
|
|
/** @ingroup iface_wl_data_source */
|
|
static inline void
|
|
wl_data_source_set_user_data(struct wl_data_source *wl_data_source, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_data_source, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_data_source */
|
|
static inline void *
|
|
wl_data_source_get_user_data(struct wl_data_source *wl_data_source)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_data_source);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_data_source_get_version(struct wl_data_source *wl_data_source)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_data_source);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*
|
|
* This request adds a mime type to the set of mime types
|
|
* advertised to targets. Can be called several times to offer
|
|
* multiple types.
|
|
*/
|
|
static inline void
|
|
wl_data_source_offer(struct wl_data_source *wl_data_source, const char *mime_type)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_source,
|
|
WL_DATA_SOURCE_OFFER, mime_type);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*
|
|
* Destroy the data source.
|
|
*/
|
|
static inline void
|
|
wl_data_source_destroy(struct wl_data_source *wl_data_source)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_source,
|
|
WL_DATA_SOURCE_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_data_source);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_source
|
|
*
|
|
* Sets the actions that the source side client supports for this
|
|
* operation. This request may trigger wl_data_source.action and
|
|
* wl_data_offer.action events if the compositor needs to change the
|
|
* selected action.
|
|
*
|
|
* The dnd_actions argument must contain only values expressed in the
|
|
* wl_data_device_manager.dnd_actions enum, otherwise it will result
|
|
* in a protocol error.
|
|
*
|
|
* This request must be made once only, and can only be made on sources
|
|
* used in drag-and-drop, so it must be performed before
|
|
* wl_data_device.start_drag. Attempting to use the source other than
|
|
* for drag-and-drop will raise a protocol error.
|
|
*/
|
|
static inline void
|
|
wl_data_source_set_actions(struct wl_data_source *wl_data_source, uint32_t dnd_actions)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_source,
|
|
WL_DATA_SOURCE_SET_ACTIONS, dnd_actions);
|
|
}
|
|
|
|
#ifndef WL_DATA_DEVICE_ERROR_ENUM
|
|
#define WL_DATA_DEVICE_ERROR_ENUM
|
|
enum wl_data_device_error {
|
|
/**
|
|
* given wl_surface has another role
|
|
*/
|
|
WL_DATA_DEVICE_ERROR_ROLE = 0,
|
|
};
|
|
#endif /* WL_DATA_DEVICE_ERROR_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
* @struct wl_data_device_listener
|
|
*/
|
|
struct wl_data_device_listener {
|
|
/**
|
|
* introduce a new wl_data_offer
|
|
*
|
|
* The data_offer event introduces a new wl_data_offer object,
|
|
* which will subsequently be used in either the data_device.enter
|
|
* event (for drag-and-drop) or the data_device.selection event
|
|
* (for selections). Immediately following the
|
|
* data_device_data_offer event, the new data_offer object will
|
|
* send out data_offer.offer events to describe the mime types it
|
|
* offers.
|
|
* @param id the new data_offer object
|
|
*/
|
|
void (*data_offer)(void *data,
|
|
struct wl_data_device *wl_data_device,
|
|
struct wl_data_offer *id);
|
|
/**
|
|
* initiate drag-and-drop session
|
|
*
|
|
* This event is sent when an active drag-and-drop pointer enters
|
|
* a surface owned by the client. The position of the pointer at
|
|
* enter time is provided by the x and y arguments, in
|
|
* surface-local coordinates.
|
|
* @param serial serial number of the enter event
|
|
* @param surface client surface entered
|
|
* @param x surface-local x coordinate
|
|
* @param y surface-local y coordinate
|
|
* @param id source data_offer object
|
|
*/
|
|
void (*enter)(void *data,
|
|
struct wl_data_device *wl_data_device,
|
|
uint32_t serial,
|
|
struct wl_surface *surface,
|
|
wl_fixed_t x,
|
|
wl_fixed_t y,
|
|
struct wl_data_offer *id);
|
|
/**
|
|
* end drag-and-drop session
|
|
*
|
|
* This event is sent when the drag-and-drop pointer leaves the
|
|
* surface and the session ends. The client must destroy the
|
|
* wl_data_offer introduced at enter time at this point.
|
|
*/
|
|
void (*leave)(void *data,
|
|
struct wl_data_device *wl_data_device);
|
|
/**
|
|
* drag-and-drop session motion
|
|
*
|
|
* This event is sent when the drag-and-drop pointer moves within
|
|
* the currently focused surface. The new position of the pointer
|
|
* is provided by the x and y arguments, in surface-local
|
|
* coordinates.
|
|
* @param time timestamp with millisecond granularity
|
|
* @param x surface-local x coordinate
|
|
* @param y surface-local y coordinate
|
|
*/
|
|
void (*motion)(void *data,
|
|
struct wl_data_device *wl_data_device,
|
|
uint32_t time,
|
|
wl_fixed_t x,
|
|
wl_fixed_t y);
|
|
/**
|
|
* end drag-and-drop session successfully
|
|
*
|
|
* The event is sent when a drag-and-drop operation is ended
|
|
* because the implicit grab is removed.
|
|
*
|
|
* The drag-and-drop destination is expected to honor the last
|
|
* action received through wl_data_offer.action, if the resulting
|
|
* action is "copy" or "move", the destination can still perform
|
|
* wl_data_offer.receive requests, and is expected to end all
|
|
* transfers with a wl_data_offer.finish request.
|
|
*
|
|
* If the resulting action is "ask", the action will not be
|
|
* considered final. The drag-and-drop destination is expected to
|
|
* perform one last wl_data_offer.set_actions request, or
|
|
* wl_data_offer.destroy in order to cancel the operation.
|
|
*/
|
|
void (*drop)(void *data,
|
|
struct wl_data_device *wl_data_device);
|
|
/**
|
|
* advertise new selection
|
|
*
|
|
* The selection event is sent out to notify the client of a new
|
|
* wl_data_offer for the selection for this device. The
|
|
* data_device.data_offer and the data_offer.offer events are sent
|
|
* out immediately before this event to introduce the data offer
|
|
* object. The selection event is sent to a client immediately
|
|
* before receiving keyboard focus and when a new selection is set
|
|
* while the client has keyboard focus. The data_offer is valid
|
|
* until a new data_offer or NULL is received or until the client
|
|
* loses keyboard focus. The client must destroy the previous
|
|
* selection data_offer, if any, upon receiving this event.
|
|
* @param id selection data_offer object
|
|
*/
|
|
void (*selection)(void *data,
|
|
struct wl_data_device *wl_data_device,
|
|
struct wl_data_offer *id);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
static inline int
|
|
wl_data_device_add_listener(struct wl_data_device *wl_data_device,
|
|
const struct wl_data_device_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_data_device,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_DATA_DEVICE_START_DRAG 0
|
|
#define WL_DATA_DEVICE_SET_SELECTION 1
|
|
#define WL_DATA_DEVICE_RELEASE 2
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_DATA_OFFER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_ENTER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_LEAVE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_MOTION_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_DROP_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_SELECTION_SINCE_VERSION 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_START_DRAG_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_SET_SELECTION_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*/
|
|
#define WL_DATA_DEVICE_RELEASE_SINCE_VERSION 2
|
|
|
|
/** @ingroup iface_wl_data_device */
|
|
static inline void
|
|
wl_data_device_set_user_data(struct wl_data_device *wl_data_device, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_data_device, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_data_device */
|
|
static inline void *
|
|
wl_data_device_get_user_data(struct wl_data_device *wl_data_device)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_data_device);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_data_device_get_version(struct wl_data_device *wl_data_device)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_data_device);
|
|
}
|
|
|
|
/** @ingroup iface_wl_data_device */
|
|
static inline void
|
|
wl_data_device_destroy(struct wl_data_device *wl_data_device)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_data_device);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*
|
|
* This request asks the compositor to start a drag-and-drop
|
|
* operation on behalf of the client.
|
|
*
|
|
* The source argument is the data source that provides the data
|
|
* for the eventual data transfer. If source is NULL, enter, leave
|
|
* and motion events are sent only to the client that initiated the
|
|
* drag and the client is expected to handle the data passing
|
|
* internally.
|
|
*
|
|
* The origin surface is the surface where the drag originates and
|
|
* the client must have an active implicit grab that matches the
|
|
* serial.
|
|
*
|
|
* The icon surface is an optional (can be NULL) surface that
|
|
* provides an icon to be moved around with the cursor. Initially,
|
|
* the top-left corner of the icon surface is placed at the cursor
|
|
* hotspot, but subsequent wl_surface.attach request can move the
|
|
* relative position. Attach requests must be confirmed with
|
|
* wl_surface.commit as usual. The icon surface is given the role of
|
|
* a drag-and-drop icon. If the icon surface already has another role,
|
|
* it raises a protocol error.
|
|
*
|
|
* The current and pending input regions of the icon wl_surface are
|
|
* cleared, and wl_surface.set_input_region is ignored until the
|
|
* wl_surface is no longer used as the icon surface. When the use
|
|
* as an icon ends, the current and pending input regions become
|
|
* undefined, and the wl_surface is unmapped.
|
|
*/
|
|
static inline void
|
|
wl_data_device_start_drag(struct wl_data_device *wl_data_device, struct wl_data_source *source, struct wl_surface *origin, struct wl_surface *icon, uint32_t serial)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_device,
|
|
WL_DATA_DEVICE_START_DRAG, source, origin, icon, serial);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*
|
|
* This request asks the compositor to set the selection
|
|
* to the data from the source on behalf of the client.
|
|
*
|
|
* To unset the selection, set the source to NULL.
|
|
*/
|
|
static inline void
|
|
wl_data_device_set_selection(struct wl_data_device *wl_data_device, struct wl_data_source *source, uint32_t serial)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_device,
|
|
WL_DATA_DEVICE_SET_SELECTION, source, serial);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device
|
|
*
|
|
* This request destroys the data device.
|
|
*/
|
|
static inline void
|
|
wl_data_device_release(struct wl_data_device *wl_data_device)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_data_device,
|
|
WL_DATA_DEVICE_RELEASE);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_data_device);
|
|
}
|
|
|
|
#ifndef WL_DATA_DEVICE_MANAGER_DND_ACTION_ENUM
|
|
#define WL_DATA_DEVICE_MANAGER_DND_ACTION_ENUM
|
|
/**
|
|
* @ingroup iface_wl_data_device_manager
|
|
* drag and drop actions
|
|
*
|
|
* This is a bitmask of the available/preferred actions in a
|
|
* drag-and-drop operation.
|
|
*
|
|
* In the compositor, the selected action is a result of matching the
|
|
* actions offered by the source and destination sides. "action" events
|
|
* with a "none" action will be sent to both source and destination if
|
|
* there is no match. All further checks will effectively happen on
|
|
* (source actions ∩ destination actions).
|
|
*
|
|
* In addition, compositors may also pick different actions in
|
|
* reaction to key modifiers being pressed. One common design that
|
|
* is used in major toolkits (and the behavior recommended for
|
|
* compositors) is:
|
|
*
|
|
* - If no modifiers are pressed, the first match (in bit order)
|
|
* will be used.
|
|
* - Pressing Shift selects "move", if enabled in the mask.
|
|
* - Pressing Control selects "copy", if enabled in the mask.
|
|
*
|
|
* Behavior beyond that is considered implementation-dependent.
|
|
* Compositors may for example bind other modifiers (like Alt/Meta)
|
|
* or drags initiated with other buttons than BTN_LEFT to specific
|
|
* actions (e.g. "ask").
|
|
*/
|
|
enum wl_data_device_manager_dnd_action {
|
|
/**
|
|
* no action
|
|
*/
|
|
WL_DATA_DEVICE_MANAGER_DND_ACTION_NONE = 0,
|
|
/**
|
|
* copy action
|
|
*/
|
|
WL_DATA_DEVICE_MANAGER_DND_ACTION_COPY = 1,
|
|
/**
|
|
* move action
|
|
*/
|
|
WL_DATA_DEVICE_MANAGER_DND_ACTION_MOVE = 2,
|
|
/**
|
|
* ask action
|
|
*/
|
|
WL_DATA_DEVICE_MANAGER_DND_ACTION_ASK = 4,
|
|
};
|
|
#endif /* WL_DATA_DEVICE_MANAGER_DND_ACTION_ENUM */
|
|
|
|
#define WL_DATA_DEVICE_MANAGER_CREATE_DATA_SOURCE 0
|
|
#define WL_DATA_DEVICE_MANAGER_GET_DATA_DEVICE 1
|
|
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device_manager
|
|
*/
|
|
#define WL_DATA_DEVICE_MANAGER_CREATE_DATA_SOURCE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_data_device_manager
|
|
*/
|
|
#define WL_DATA_DEVICE_MANAGER_GET_DATA_DEVICE_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_data_device_manager */
|
|
static inline void
|
|
wl_data_device_manager_set_user_data(struct wl_data_device_manager *wl_data_device_manager, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_data_device_manager, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_data_device_manager */
|
|
static inline void *
|
|
wl_data_device_manager_get_user_data(struct wl_data_device_manager *wl_data_device_manager)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_data_device_manager);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_data_device_manager_get_version(struct wl_data_device_manager *wl_data_device_manager)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_data_device_manager);
|
|
}
|
|
|
|
/** @ingroup iface_wl_data_device_manager */
|
|
static inline void
|
|
wl_data_device_manager_destroy(struct wl_data_device_manager *wl_data_device_manager)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_data_device_manager);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device_manager
|
|
*
|
|
* Create a new data source.
|
|
*/
|
|
static inline struct wl_data_source *
|
|
wl_data_device_manager_create_data_source(struct wl_data_device_manager *wl_data_device_manager)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_data_device_manager,
|
|
WL_DATA_DEVICE_MANAGER_CREATE_DATA_SOURCE, &wl_data_source_interface, NULL);
|
|
|
|
return (struct wl_data_source *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_data_device_manager
|
|
*
|
|
* Create a new data device for a given seat.
|
|
*/
|
|
static inline struct wl_data_device *
|
|
wl_data_device_manager_get_data_device(struct wl_data_device_manager *wl_data_device_manager, struct wl_seat *seat)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_data_device_manager,
|
|
WL_DATA_DEVICE_MANAGER_GET_DATA_DEVICE, &wl_data_device_interface, NULL, seat);
|
|
|
|
return (struct wl_data_device *) id;
|
|
}
|
|
|
|
#ifndef WL_SHELL_ERROR_ENUM
|
|
#define WL_SHELL_ERROR_ENUM
|
|
enum wl_shell_error {
|
|
/**
|
|
* given wl_surface has another role
|
|
*/
|
|
WL_SHELL_ERROR_ROLE = 0,
|
|
};
|
|
#endif /* WL_SHELL_ERROR_ENUM */
|
|
|
|
#define WL_SHELL_GET_SHELL_SURFACE 0
|
|
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell
|
|
*/
|
|
#define WL_SHELL_GET_SHELL_SURFACE_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_shell */
|
|
static inline void
|
|
wl_shell_set_user_data(struct wl_shell *wl_shell, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_shell, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_shell */
|
|
static inline void *
|
|
wl_shell_get_user_data(struct wl_shell *wl_shell)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_shell);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_shell_get_version(struct wl_shell *wl_shell)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_shell);
|
|
}
|
|
|
|
/** @ingroup iface_wl_shell */
|
|
static inline void
|
|
wl_shell_destroy(struct wl_shell *wl_shell)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_shell);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell
|
|
*
|
|
* Create a shell surface for an existing surface. This gives
|
|
* the wl_surface the role of a shell surface. If the wl_surface
|
|
* already has another role, it raises a protocol error.
|
|
*
|
|
* Only one shell surface can be associated with a given surface.
|
|
*/
|
|
static inline struct wl_shell_surface *
|
|
wl_shell_get_shell_surface(struct wl_shell *wl_shell, struct wl_surface *surface)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_shell,
|
|
WL_SHELL_GET_SHELL_SURFACE, &wl_shell_surface_interface, NULL, surface);
|
|
|
|
return (struct wl_shell_surface *) id;
|
|
}
|
|
|
|
#ifndef WL_SHELL_SURFACE_RESIZE_ENUM
|
|
#define WL_SHELL_SURFACE_RESIZE_ENUM
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
* edge values for resizing
|
|
*
|
|
* These values are used to indicate which edge of a surface
|
|
* is being dragged in a resize operation. The server may
|
|
* use this information to adapt its behavior, e.g. choose
|
|
* an appropriate cursor image.
|
|
*/
|
|
enum wl_shell_surface_resize {
|
|
/**
|
|
* no edge
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_NONE = 0,
|
|
/**
|
|
* top edge
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_TOP = 1,
|
|
/**
|
|
* bottom edge
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_BOTTOM = 2,
|
|
/**
|
|
* left edge
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_LEFT = 4,
|
|
/**
|
|
* top and left edges
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_TOP_LEFT = 5,
|
|
/**
|
|
* bottom and left edges
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_BOTTOM_LEFT = 6,
|
|
/**
|
|
* right edge
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_RIGHT = 8,
|
|
/**
|
|
* top and right edges
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_TOP_RIGHT = 9,
|
|
/**
|
|
* bottom and right edges
|
|
*/
|
|
WL_SHELL_SURFACE_RESIZE_BOTTOM_RIGHT = 10,
|
|
};
|
|
#endif /* WL_SHELL_SURFACE_RESIZE_ENUM */
|
|
|
|
#ifndef WL_SHELL_SURFACE_TRANSIENT_ENUM
|
|
#define WL_SHELL_SURFACE_TRANSIENT_ENUM
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
* details of transient behaviour
|
|
*
|
|
* These flags specify details of the expected behaviour
|
|
* of transient surfaces. Used in the set_transient request.
|
|
*/
|
|
enum wl_shell_surface_transient {
|
|
/**
|
|
* do not set keyboard focus
|
|
*/
|
|
WL_SHELL_SURFACE_TRANSIENT_INACTIVE = 0x1,
|
|
};
|
|
#endif /* WL_SHELL_SURFACE_TRANSIENT_ENUM */
|
|
|
|
#ifndef WL_SHELL_SURFACE_FULLSCREEN_METHOD_ENUM
|
|
#define WL_SHELL_SURFACE_FULLSCREEN_METHOD_ENUM
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
* different method to set the surface fullscreen
|
|
*
|
|
* Hints to indicate to the compositor how to deal with a conflict
|
|
* between the dimensions of the surface and the dimensions of the
|
|
* output. The compositor is free to ignore this parameter.
|
|
*/
|
|
enum wl_shell_surface_fullscreen_method {
|
|
/**
|
|
* no preference, apply default policy
|
|
*/
|
|
WL_SHELL_SURFACE_FULLSCREEN_METHOD_DEFAULT = 0,
|
|
/**
|
|
* scale, preserve the surface's aspect ratio and center on output
|
|
*/
|
|
WL_SHELL_SURFACE_FULLSCREEN_METHOD_SCALE = 1,
|
|
/**
|
|
* switch output mode to the smallest mode that can fit the surface, add black borders to compensate size mismatch
|
|
*/
|
|
WL_SHELL_SURFACE_FULLSCREEN_METHOD_DRIVER = 2,
|
|
/**
|
|
* no upscaling, center on output and add black borders to compensate size mismatch
|
|
*/
|
|
WL_SHELL_SURFACE_FULLSCREEN_METHOD_FILL = 3,
|
|
};
|
|
#endif /* WL_SHELL_SURFACE_FULLSCREEN_METHOD_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
* @struct wl_shell_surface_listener
|
|
*/
|
|
struct wl_shell_surface_listener {
|
|
/**
|
|
* ping client
|
|
*
|
|
* Ping a client to check if it is receiving events and sending
|
|
* requests. A client is expected to reply with a pong request.
|
|
* @param serial serial number of the ping
|
|
*/
|
|
void (*ping)(void *data,
|
|
struct wl_shell_surface *wl_shell_surface,
|
|
uint32_t serial);
|
|
/**
|
|
* suggest resize
|
|
*
|
|
* The configure event asks the client to resize its surface.
|
|
*
|
|
* The size is a hint, in the sense that the client is free to
|
|
* ignore it if it doesn't resize, pick a smaller size (to satisfy
|
|
* aspect ratio or resize in steps of NxM pixels).
|
|
*
|
|
* The edges parameter provides a hint about how the surface was
|
|
* resized. The client may use this information to decide how to
|
|
* adjust its content to the new size (e.g. a scrolling area might
|
|
* adjust its content position to leave the viewable content
|
|
* unmoved).
|
|
*
|
|
* The client is free to dismiss all but the last configure event
|
|
* it received.
|
|
*
|
|
* The width and height arguments specify the size of the window in
|
|
* surface-local coordinates.
|
|
* @param edges how the surface was resized
|
|
* @param width new width of the surface
|
|
* @param height new height of the surface
|
|
*/
|
|
void (*configure)(void *data,
|
|
struct wl_shell_surface *wl_shell_surface,
|
|
uint32_t edges,
|
|
int32_t width,
|
|
int32_t height);
|
|
/**
|
|
* popup interaction is done
|
|
*
|
|
* The popup_done event is sent out when a popup grab is broken,
|
|
* that is, when the user clicks a surface that doesn't belong to
|
|
* the client owning the popup surface.
|
|
*/
|
|
void (*popup_done)(void *data,
|
|
struct wl_shell_surface *wl_shell_surface);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
static inline int
|
|
wl_shell_surface_add_listener(struct wl_shell_surface *wl_shell_surface,
|
|
const struct wl_shell_surface_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_shell_surface,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_SHELL_SURFACE_PONG 0
|
|
#define WL_SHELL_SURFACE_MOVE 1
|
|
#define WL_SHELL_SURFACE_RESIZE 2
|
|
#define WL_SHELL_SURFACE_SET_TOPLEVEL 3
|
|
#define WL_SHELL_SURFACE_SET_TRANSIENT 4
|
|
#define WL_SHELL_SURFACE_SET_FULLSCREEN 5
|
|
#define WL_SHELL_SURFACE_SET_POPUP 6
|
|
#define WL_SHELL_SURFACE_SET_MAXIMIZED 7
|
|
#define WL_SHELL_SURFACE_SET_TITLE 8
|
|
#define WL_SHELL_SURFACE_SET_CLASS 9
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_PING_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_CONFIGURE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_POPUP_DONE_SINCE_VERSION 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_PONG_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_MOVE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_RESIZE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_SET_TOPLEVEL_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_SET_TRANSIENT_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_SET_FULLSCREEN_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_SET_POPUP_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_SET_MAXIMIZED_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_SET_TITLE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*/
|
|
#define WL_SHELL_SURFACE_SET_CLASS_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_shell_surface */
|
|
static inline void
|
|
wl_shell_surface_set_user_data(struct wl_shell_surface *wl_shell_surface, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_shell_surface, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_shell_surface */
|
|
static inline void *
|
|
wl_shell_surface_get_user_data(struct wl_shell_surface *wl_shell_surface)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_shell_surface);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_shell_surface_get_version(struct wl_shell_surface *wl_shell_surface)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_shell_surface);
|
|
}
|
|
|
|
/** @ingroup iface_wl_shell_surface */
|
|
static inline void
|
|
wl_shell_surface_destroy(struct wl_shell_surface *wl_shell_surface)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_shell_surface);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* A client must respond to a ping event with a pong request or
|
|
* the client may be deemed unresponsive.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_pong(struct wl_shell_surface *wl_shell_surface, uint32_t serial)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_PONG, serial);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Start a pointer-driven move of the surface.
|
|
*
|
|
* This request must be used in response to a button press event.
|
|
* The server may ignore move requests depending on the state of
|
|
* the surface (e.g. fullscreen or maximized).
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_move(struct wl_shell_surface *wl_shell_surface, struct wl_seat *seat, uint32_t serial)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_MOVE, seat, serial);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Start a pointer-driven resizing of the surface.
|
|
*
|
|
* This request must be used in response to a button press event.
|
|
* The server may ignore resize requests depending on the state of
|
|
* the surface (e.g. fullscreen or maximized).
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_resize(struct wl_shell_surface *wl_shell_surface, struct wl_seat *seat, uint32_t serial, uint32_t edges)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_RESIZE, seat, serial, edges);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Map the surface as a toplevel surface.
|
|
*
|
|
* A toplevel surface is not fullscreen, maximized or transient.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_set_toplevel(struct wl_shell_surface *wl_shell_surface)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_SET_TOPLEVEL);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Map the surface relative to an existing surface.
|
|
*
|
|
* The x and y arguments specify the location of the upper left
|
|
* corner of the surface relative to the upper left corner of the
|
|
* parent surface, in surface-local coordinates.
|
|
*
|
|
* The flags argument controls details of the transient behaviour.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_set_transient(struct wl_shell_surface *wl_shell_surface, struct wl_surface *parent, int32_t x, int32_t y, uint32_t flags)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_SET_TRANSIENT, parent, x, y, flags);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Map the surface as a fullscreen surface.
|
|
*
|
|
* If an output parameter is given then the surface will be made
|
|
* fullscreen on that output. If the client does not specify the
|
|
* output then the compositor will apply its policy - usually
|
|
* choosing the output on which the surface has the biggest surface
|
|
* area.
|
|
*
|
|
* The client may specify a method to resolve a size conflict
|
|
* between the output size and the surface size - this is provided
|
|
* through the method parameter.
|
|
*
|
|
* The framerate parameter is used only when the method is set
|
|
* to "driver", to indicate the preferred framerate. A value of 0
|
|
* indicates that the client does not care about framerate. The
|
|
* framerate is specified in mHz, that is framerate of 60000 is 60Hz.
|
|
*
|
|
* A method of "scale" or "driver" implies a scaling operation of
|
|
* the surface, either via a direct scaling operation or a change of
|
|
* the output mode. This will override any kind of output scaling, so
|
|
* that mapping a surface with a buffer size equal to the mode can
|
|
* fill the screen independent of buffer_scale.
|
|
*
|
|
* A method of "fill" means we don't scale up the buffer, however
|
|
* any output scale is applied. This means that you may run into
|
|
* an edge case where the application maps a buffer with the same
|
|
* size of the output mode but buffer_scale 1 (thus making a
|
|
* surface larger than the output). In this case it is allowed to
|
|
* downscale the results to fit the screen.
|
|
*
|
|
* The compositor must reply to this request with a configure event
|
|
* with the dimensions for the output on which the surface will
|
|
* be made fullscreen.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_set_fullscreen(struct wl_shell_surface *wl_shell_surface, uint32_t method, uint32_t framerate, struct wl_output *output)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_SET_FULLSCREEN, method, framerate, output);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Map the surface as a popup.
|
|
*
|
|
* A popup surface is a transient surface with an added pointer
|
|
* grab.
|
|
*
|
|
* An existing implicit grab will be changed to owner-events mode,
|
|
* and the popup grab will continue after the implicit grab ends
|
|
* (i.e. releasing the mouse button does not cause the popup to
|
|
* be unmapped).
|
|
*
|
|
* The popup grab continues until the window is destroyed or a
|
|
* mouse button is pressed in any other client's window. A click
|
|
* in any of the client's surfaces is reported as normal, however,
|
|
* clicks in other clients' surfaces will be discarded and trigger
|
|
* the callback.
|
|
*
|
|
* The x and y arguments specify the location of the upper left
|
|
* corner of the surface relative to the upper left corner of the
|
|
* parent surface, in surface-local coordinates.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_set_popup(struct wl_shell_surface *wl_shell_surface, struct wl_seat *seat, uint32_t serial, struct wl_surface *parent, int32_t x, int32_t y, uint32_t flags)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_SET_POPUP, seat, serial, parent, x, y, flags);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Map the surface as a maximized surface.
|
|
*
|
|
* If an output parameter is given then the surface will be
|
|
* maximized on that output. If the client does not specify the
|
|
* output then the compositor will apply its policy - usually
|
|
* choosing the output on which the surface has the biggest surface
|
|
* area.
|
|
*
|
|
* The compositor will reply with a configure event telling
|
|
* the expected new surface size. The operation is completed
|
|
* on the next buffer attach to this surface.
|
|
*
|
|
* A maximized surface typically fills the entire output it is
|
|
* bound to, except for desktop elements such as panels. This is
|
|
* the main difference between a maximized shell surface and a
|
|
* fullscreen shell surface.
|
|
*
|
|
* The details depend on the compositor implementation.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_set_maximized(struct wl_shell_surface *wl_shell_surface, struct wl_output *output)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_SET_MAXIMIZED, output);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Set a short title for the surface.
|
|
*
|
|
* This string may be used to identify the surface in a task bar,
|
|
* window list, or other user interface elements provided by the
|
|
* compositor.
|
|
*
|
|
* The string must be encoded in UTF-8.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_set_title(struct wl_shell_surface *wl_shell_surface, const char *title)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_SET_TITLE, title);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_shell_surface
|
|
*
|
|
* Set a class for the surface.
|
|
*
|
|
* The surface class identifies the general class of applications
|
|
* to which the surface belongs. A common convention is to use the
|
|
* file name (or the full path if it is a non-standard location) of
|
|
* the application's .desktop file as the class.
|
|
*/
|
|
static inline void
|
|
wl_shell_surface_set_class(struct wl_shell_surface *wl_shell_surface, const char *class_)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_shell_surface,
|
|
WL_SHELL_SURFACE_SET_CLASS, class_);
|
|
}
|
|
|
|
#ifndef WL_SURFACE_ERROR_ENUM
|
|
#define WL_SURFACE_ERROR_ENUM
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
* wl_surface error values
|
|
*
|
|
* These errors can be emitted in response to wl_surface requests.
|
|
*/
|
|
enum wl_surface_error {
|
|
/**
|
|
* buffer scale value is invalid
|
|
*/
|
|
WL_SURFACE_ERROR_INVALID_SCALE = 0,
|
|
/**
|
|
* buffer transform value is invalid
|
|
*/
|
|
WL_SURFACE_ERROR_INVALID_TRANSFORM = 1,
|
|
};
|
|
#endif /* WL_SURFACE_ERROR_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
* @struct wl_surface_listener
|
|
*/
|
|
struct wl_surface_listener {
|
|
/**
|
|
* surface enters an output
|
|
*
|
|
* This is emitted whenever a surface's creation, movement, or
|
|
* resizing results in some part of it being within the scanout
|
|
* region of an output.
|
|
*
|
|
* Note that a surface may be overlapping with zero or more
|
|
* outputs.
|
|
* @param output output entered by the surface
|
|
*/
|
|
void (*enter)(void *data,
|
|
struct wl_surface *wl_surface,
|
|
struct wl_output *output);
|
|
/**
|
|
* surface leaves an output
|
|
*
|
|
* This is emitted whenever a surface's creation, movement, or
|
|
* resizing results in it no longer having any part of it within
|
|
* the scanout region of an output.
|
|
* @param output output left by the surface
|
|
*/
|
|
void (*leave)(void *data,
|
|
struct wl_surface *wl_surface,
|
|
struct wl_output *output);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
static inline int
|
|
wl_surface_add_listener(struct wl_surface *wl_surface,
|
|
const struct wl_surface_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_surface,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_SURFACE_DESTROY 0
|
|
#define WL_SURFACE_ATTACH 1
|
|
#define WL_SURFACE_DAMAGE 2
|
|
#define WL_SURFACE_FRAME 3
|
|
#define WL_SURFACE_SET_OPAQUE_REGION 4
|
|
#define WL_SURFACE_SET_INPUT_REGION 5
|
|
#define WL_SURFACE_COMMIT 6
|
|
#define WL_SURFACE_SET_BUFFER_TRANSFORM 7
|
|
#define WL_SURFACE_SET_BUFFER_SCALE 8
|
|
#define WL_SURFACE_DAMAGE_BUFFER 9
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_ENTER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_LEAVE_SINCE_VERSION 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_DESTROY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_ATTACH_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_DAMAGE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_FRAME_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_SET_OPAQUE_REGION_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_SET_INPUT_REGION_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_COMMIT_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_SET_BUFFER_TRANSFORM_SINCE_VERSION 2
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_SET_BUFFER_SCALE_SINCE_VERSION 3
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*/
|
|
#define WL_SURFACE_DAMAGE_BUFFER_SINCE_VERSION 4
|
|
|
|
/** @ingroup iface_wl_surface */
|
|
static inline void
|
|
wl_surface_set_user_data(struct wl_surface *wl_surface, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_surface, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_surface */
|
|
static inline void *
|
|
wl_surface_get_user_data(struct wl_surface *wl_surface)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_surface);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_surface_get_version(struct wl_surface *wl_surface)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_surface);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* Deletes the surface and invalidates its object ID.
|
|
*/
|
|
static inline void
|
|
wl_surface_destroy(struct wl_surface *wl_surface)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_surface);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* Set a buffer as the content of this surface.
|
|
*
|
|
* The new size of the surface is calculated based on the buffer
|
|
* size transformed by the inverse buffer_transform and the
|
|
* inverse buffer_scale. This means that the supplied buffer
|
|
* must be an integer multiple of the buffer_scale.
|
|
*
|
|
* The x and y arguments specify the location of the new pending
|
|
* buffer's upper left corner, relative to the current buffer's upper
|
|
* left corner, in surface-local coordinates. In other words, the
|
|
* x and y, combined with the new surface size define in which
|
|
* directions the surface's size changes.
|
|
*
|
|
* Surface contents are double-buffered state, see wl_surface.commit.
|
|
*
|
|
* The initial surface contents are void; there is no content.
|
|
* wl_surface.attach assigns the given wl_buffer as the pending
|
|
* wl_buffer. wl_surface.commit makes the pending wl_buffer the new
|
|
* surface contents, and the size of the surface becomes the size
|
|
* calculated from the wl_buffer, as described above. After commit,
|
|
* there is no pending buffer until the next attach.
|
|
*
|
|
* Committing a pending wl_buffer allows the compositor to read the
|
|
* pixels in the wl_buffer. The compositor may access the pixels at
|
|
* any time after the wl_surface.commit request. When the compositor
|
|
* will not access the pixels anymore, it will send the
|
|
* wl_buffer.release event. Only after receiving wl_buffer.release,
|
|
* the client may reuse the wl_buffer. A wl_buffer that has been
|
|
* attached and then replaced by another attach instead of committed
|
|
* will not receive a release event, and is not used by the
|
|
* compositor.
|
|
*
|
|
* Destroying the wl_buffer after wl_buffer.release does not change
|
|
* the surface contents. However, if the client destroys the
|
|
* wl_buffer before receiving the wl_buffer.release event, the surface
|
|
* contents become undefined immediately.
|
|
*
|
|
* If wl_surface.attach is sent with a NULL wl_buffer, the
|
|
* following wl_surface.commit will remove the surface content.
|
|
*/
|
|
static inline void
|
|
wl_surface_attach(struct wl_surface *wl_surface, struct wl_buffer *buffer, int32_t x, int32_t y)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_ATTACH, buffer, x, y);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* This request is used to describe the regions where the pending
|
|
* buffer is different from the current surface contents, and where
|
|
* the surface therefore needs to be repainted. The compositor
|
|
* ignores the parts of the damage that fall outside of the surface.
|
|
*
|
|
* Damage is double-buffered state, see wl_surface.commit.
|
|
*
|
|
* The damage rectangle is specified in surface-local coordinates,
|
|
* where x and y specify the upper left corner of the damage rectangle.
|
|
*
|
|
* The initial value for pending damage is empty: no damage.
|
|
* wl_surface.damage adds pending damage: the new pending damage
|
|
* is the union of old pending damage and the given rectangle.
|
|
*
|
|
* wl_surface.commit assigns pending damage as the current damage,
|
|
* and clears pending damage. The server will clear the current
|
|
* damage as it repaints the surface.
|
|
*
|
|
* Alternatively, damage can be posted with wl_surface.damage_buffer
|
|
* which uses buffer coordinates instead of surface coordinates,
|
|
* and is probably the preferred and intuitive way of doing this.
|
|
*/
|
|
static inline void
|
|
wl_surface_damage(struct wl_surface *wl_surface, int32_t x, int32_t y, int32_t width, int32_t height)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_DAMAGE, x, y, width, height);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* Request a notification when it is a good time to start drawing a new
|
|
* frame, by creating a frame callback. This is useful for throttling
|
|
* redrawing operations, and driving animations.
|
|
*
|
|
* When a client is animating on a wl_surface, it can use the 'frame'
|
|
* request to get notified when it is a good time to draw and commit the
|
|
* next frame of animation. If the client commits an update earlier than
|
|
* that, it is likely that some updates will not make it to the display,
|
|
* and the client is wasting resources by drawing too often.
|
|
*
|
|
* The frame request will take effect on the next wl_surface.commit.
|
|
* The notification will only be posted for one frame unless
|
|
* requested again. For a wl_surface, the notifications are posted in
|
|
* the order the frame requests were committed.
|
|
*
|
|
* The server must send the notifications so that a client
|
|
* will not send excessive updates, while still allowing
|
|
* the highest possible update rate for clients that wait for the reply
|
|
* before drawing again. The server should give some time for the client
|
|
* to draw and commit after sending the frame callback events to let it
|
|
* hit the next output refresh.
|
|
*
|
|
* A server should avoid signaling the frame callbacks if the
|
|
* surface is not visible in any way, e.g. the surface is off-screen,
|
|
* or completely obscured by other opaque surfaces.
|
|
*
|
|
* The object returned by this request will be destroyed by the
|
|
* compositor after the callback is fired and as such the client must not
|
|
* attempt to use it after that point.
|
|
*
|
|
* The callback_data passed in the callback is the current time, in
|
|
* milliseconds, with an undefined base.
|
|
*/
|
|
static inline struct wl_callback *
|
|
wl_surface_frame(struct wl_surface *wl_surface)
|
|
{
|
|
struct wl_proxy *callback;
|
|
|
|
callback = wl_proxy_marshal_constructor((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_FRAME, &wl_callback_interface, NULL);
|
|
|
|
return (struct wl_callback *) callback;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* This request sets the region of the surface that contains
|
|
* opaque content.
|
|
*
|
|
* The opaque region is an optimization hint for the compositor
|
|
* that lets it optimize the redrawing of content behind opaque
|
|
* regions. Setting an opaque region is not required for correct
|
|
* behaviour, but marking transparent content as opaque will result
|
|
* in repaint artifacts.
|
|
*
|
|
* The opaque region is specified in surface-local coordinates.
|
|
*
|
|
* The compositor ignores the parts of the opaque region that fall
|
|
* outside of the surface.
|
|
*
|
|
* Opaque region is double-buffered state, see wl_surface.commit.
|
|
*
|
|
* wl_surface.set_opaque_region changes the pending opaque region.
|
|
* wl_surface.commit copies the pending region to the current region.
|
|
* Otherwise, the pending and current regions are never changed.
|
|
*
|
|
* The initial value for an opaque region is empty. Setting the pending
|
|
* opaque region has copy semantics, and the wl_region object can be
|
|
* destroyed immediately. A NULL wl_region causes the pending opaque
|
|
* region to be set to empty.
|
|
*/
|
|
static inline void
|
|
wl_surface_set_opaque_region(struct wl_surface *wl_surface, struct wl_region *region)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_SET_OPAQUE_REGION, region);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* This request sets the region of the surface that can receive
|
|
* pointer and touch events.
|
|
*
|
|
* Input events happening outside of this region will try the next
|
|
* surface in the server surface stack. The compositor ignores the
|
|
* parts of the input region that fall outside of the surface.
|
|
*
|
|
* The input region is specified in surface-local coordinates.
|
|
*
|
|
* Input region is double-buffered state, see wl_surface.commit.
|
|
*
|
|
* wl_surface.set_input_region changes the pending input region.
|
|
* wl_surface.commit copies the pending region to the current region.
|
|
* Otherwise the pending and current regions are never changed,
|
|
* except cursor and icon surfaces are special cases, see
|
|
* wl_pointer.set_cursor and wl_data_device.start_drag.
|
|
*
|
|
* The initial value for an input region is infinite. That means the
|
|
* whole surface will accept input. Setting the pending input region
|
|
* has copy semantics, and the wl_region object can be destroyed
|
|
* immediately. A NULL wl_region causes the input region to be set
|
|
* to infinite.
|
|
*/
|
|
static inline void
|
|
wl_surface_set_input_region(struct wl_surface *wl_surface, struct wl_region *region)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_SET_INPUT_REGION, region);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* Surface state (input, opaque, and damage regions, attached buffers,
|
|
* etc.) is double-buffered. Protocol requests modify the pending state,
|
|
* as opposed to the current state in use by the compositor. A commit
|
|
* request atomically applies all pending state, replacing the current
|
|
* state. After commit, the new pending state is as documented for each
|
|
* related request.
|
|
*
|
|
* On commit, a pending wl_buffer is applied first, and all other state
|
|
* second. This means that all coordinates in double-buffered state are
|
|
* relative to the new wl_buffer coming into use, except for
|
|
* wl_surface.attach itself. If there is no pending wl_buffer, the
|
|
* coordinates are relative to the current surface contents.
|
|
*
|
|
* All requests that need a commit to become effective are documented
|
|
* to affect double-buffered state.
|
|
*
|
|
* Other interfaces may add further double-buffered surface state.
|
|
*/
|
|
static inline void
|
|
wl_surface_commit(struct wl_surface *wl_surface)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_COMMIT);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* This request sets an optional transformation on how the compositor
|
|
* interprets the contents of the buffer attached to the surface. The
|
|
* accepted values for the transform parameter are the values for
|
|
* wl_output.transform.
|
|
*
|
|
* Buffer transform is double-buffered state, see wl_surface.commit.
|
|
*
|
|
* A newly created surface has its buffer transformation set to normal.
|
|
*
|
|
* wl_surface.set_buffer_transform changes the pending buffer
|
|
* transformation. wl_surface.commit copies the pending buffer
|
|
* transformation to the current one. Otherwise, the pending and current
|
|
* values are never changed.
|
|
*
|
|
* The purpose of this request is to allow clients to render content
|
|
* according to the output transform, thus permitting the compositor to
|
|
* use certain optimizations even if the display is rotated. Using
|
|
* hardware overlays and scanning out a client buffer for fullscreen
|
|
* surfaces are examples of such optimizations. Those optimizations are
|
|
* highly dependent on the compositor implementation, so the use of this
|
|
* request should be considered on a case-by-case basis.
|
|
*
|
|
* Note that if the transform value includes 90 or 270 degree rotation,
|
|
* the width of the buffer will become the surface height and the height
|
|
* of the buffer will become the surface width.
|
|
*
|
|
* If transform is not one of the values from the
|
|
* wl_output.transform enum the invalid_transform protocol error
|
|
* is raised.
|
|
*/
|
|
static inline void
|
|
wl_surface_set_buffer_transform(struct wl_surface *wl_surface, int32_t transform)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_SET_BUFFER_TRANSFORM, transform);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* This request sets an optional scaling factor on how the compositor
|
|
* interprets the contents of the buffer attached to the window.
|
|
*
|
|
* Buffer scale is double-buffered state, see wl_surface.commit.
|
|
*
|
|
* A newly created surface has its buffer scale set to 1.
|
|
*
|
|
* wl_surface.set_buffer_scale changes the pending buffer scale.
|
|
* wl_surface.commit copies the pending buffer scale to the current one.
|
|
* Otherwise, the pending and current values are never changed.
|
|
*
|
|
* The purpose of this request is to allow clients to supply higher
|
|
* resolution buffer data for use on high resolution outputs. It is
|
|
* intended that you pick the same buffer scale as the scale of the
|
|
* output that the surface is displayed on. This means the compositor
|
|
* can avoid scaling when rendering the surface on that output.
|
|
*
|
|
* Note that if the scale is larger than 1, then you have to attach
|
|
* a buffer that is larger (by a factor of scale in each dimension)
|
|
* than the desired surface size.
|
|
*
|
|
* If scale is not positive the invalid_scale protocol error is
|
|
* raised.
|
|
*/
|
|
static inline void
|
|
wl_surface_set_buffer_scale(struct wl_surface *wl_surface, int32_t scale)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_SET_BUFFER_SCALE, scale);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_surface
|
|
*
|
|
* This request is used to describe the regions where the pending
|
|
* buffer is different from the current surface contents, and where
|
|
* the surface therefore needs to be repainted. The compositor
|
|
* ignores the parts of the damage that fall outside of the surface.
|
|
*
|
|
* Damage is double-buffered state, see wl_surface.commit.
|
|
*
|
|
* The damage rectangle is specified in buffer coordinates,
|
|
* where x and y specify the upper left corner of the damage rectangle.
|
|
*
|
|
* The initial value for pending damage is empty: no damage.
|
|
* wl_surface.damage_buffer adds pending damage: the new pending
|
|
* damage is the union of old pending damage and the given rectangle.
|
|
*
|
|
* wl_surface.commit assigns pending damage as the current damage,
|
|
* and clears pending damage. The server will clear the current
|
|
* damage as it repaints the surface.
|
|
*
|
|
* This request differs from wl_surface.damage in only one way - it
|
|
* takes damage in buffer coordinates instead of surface-local
|
|
* coordinates. While this generally is more intuitive than surface
|
|
* coordinates, it is especially desirable when using wp_viewport
|
|
* or when a drawing library (like EGL) is unaware of buffer scale
|
|
* and buffer transform.
|
|
*
|
|
* Note: Because buffer transformation changes and damage requests may
|
|
* be interleaved in the protocol stream, it is impossible to determine
|
|
* the actual mapping between surface and buffer damage until
|
|
* wl_surface.commit time. Therefore, compositors wishing to take both
|
|
* kinds of damage into account will have to accumulate damage from the
|
|
* two requests separately and only transform from one to the other
|
|
* after receiving the wl_surface.commit.
|
|
*/
|
|
static inline void
|
|
wl_surface_damage_buffer(struct wl_surface *wl_surface, int32_t x, int32_t y, int32_t width, int32_t height)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_surface,
|
|
WL_SURFACE_DAMAGE_BUFFER, x, y, width, height);
|
|
}
|
|
|
|
#ifndef WL_SEAT_CAPABILITY_ENUM
|
|
#define WL_SEAT_CAPABILITY_ENUM
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
* seat capability bitmask
|
|
*
|
|
* This is a bitmask of capabilities this seat has; if a member is
|
|
* set, then it is present on the seat.
|
|
*/
|
|
enum wl_seat_capability {
|
|
/**
|
|
* the seat has pointer devices
|
|
*/
|
|
WL_SEAT_CAPABILITY_POINTER = 1,
|
|
/**
|
|
* the seat has one or more keyboards
|
|
*/
|
|
WL_SEAT_CAPABILITY_KEYBOARD = 2,
|
|
/**
|
|
* the seat has touch devices
|
|
*/
|
|
WL_SEAT_CAPABILITY_TOUCH = 4,
|
|
};
|
|
#endif /* WL_SEAT_CAPABILITY_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
* @struct wl_seat_listener
|
|
*/
|
|
struct wl_seat_listener {
|
|
/**
|
|
* seat capabilities changed
|
|
*
|
|
* This is emitted whenever a seat gains or loses the pointer,
|
|
* keyboard or touch capabilities. The argument is a capability
|
|
* enum containing the complete set of capabilities this seat has.
|
|
*
|
|
* When the pointer capability is added, a client may create a
|
|
* wl_pointer object using the wl_seat.get_pointer request. This
|
|
* object will receive pointer events until the capability is
|
|
* removed in the future.
|
|
*
|
|
* When the pointer capability is removed, a client should destroy
|
|
* the wl_pointer objects associated with the seat where the
|
|
* capability was removed, using the wl_pointer.release request. No
|
|
* further pointer events will be received on these objects.
|
|
*
|
|
* In some compositors, if a seat regains the pointer capability
|
|
* and a client has a previously obtained wl_pointer object of
|
|
* version 4 or less, that object may start sending pointer events
|
|
* again. This behavior is considered a misinterpretation of the
|
|
* intended behavior and must not be relied upon by the client.
|
|
* wl_pointer objects of version 5 or later must not send events if
|
|
* created before the most recent event notifying the client of an
|
|
* added pointer capability.
|
|
*
|
|
* The above behavior also applies to wl_keyboard and wl_touch with
|
|
* the keyboard and touch capabilities, respectively.
|
|
* @param capabilities capabilities of the seat
|
|
*/
|
|
void (*capabilities)(void *data,
|
|
struct wl_seat *wl_seat,
|
|
uint32_t capabilities);
|
|
/**
|
|
* unique identifier for this seat
|
|
*
|
|
* In a multiseat configuration this can be used by the client to
|
|
* help identify which physical devices the seat represents. Based
|
|
* on the seat configuration used by the compositor.
|
|
* @param name seat identifier
|
|
* @since 2
|
|
*/
|
|
void (*name)(void *data,
|
|
struct wl_seat *wl_seat,
|
|
const char *name);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*/
|
|
static inline int
|
|
wl_seat_add_listener(struct wl_seat *wl_seat,
|
|
const struct wl_seat_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_seat,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_SEAT_GET_POINTER 0
|
|
#define WL_SEAT_GET_KEYBOARD 1
|
|
#define WL_SEAT_GET_TOUCH 2
|
|
#define WL_SEAT_RELEASE 3
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*/
|
|
#define WL_SEAT_CAPABILITIES_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*/
|
|
#define WL_SEAT_NAME_SINCE_VERSION 2
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*/
|
|
#define WL_SEAT_GET_POINTER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*/
|
|
#define WL_SEAT_GET_KEYBOARD_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*/
|
|
#define WL_SEAT_GET_TOUCH_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*/
|
|
#define WL_SEAT_RELEASE_SINCE_VERSION 5
|
|
|
|
/** @ingroup iface_wl_seat */
|
|
static inline void
|
|
wl_seat_set_user_data(struct wl_seat *wl_seat, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_seat, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_seat */
|
|
static inline void *
|
|
wl_seat_get_user_data(struct wl_seat *wl_seat)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_seat);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_seat_get_version(struct wl_seat *wl_seat)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_seat);
|
|
}
|
|
|
|
/** @ingroup iface_wl_seat */
|
|
static inline void
|
|
wl_seat_destroy(struct wl_seat *wl_seat)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_seat);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*
|
|
* The ID provided will be initialized to the wl_pointer interface
|
|
* for this seat.
|
|
*
|
|
* This request only takes effect if the seat has the pointer
|
|
* capability, or has had the pointer capability in the past.
|
|
* It is a protocol violation to issue this request on a seat that has
|
|
* never had the pointer capability.
|
|
*/
|
|
static inline struct wl_pointer *
|
|
wl_seat_get_pointer(struct wl_seat *wl_seat)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_seat,
|
|
WL_SEAT_GET_POINTER, &wl_pointer_interface, NULL);
|
|
|
|
return (struct wl_pointer *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*
|
|
* The ID provided will be initialized to the wl_keyboard interface
|
|
* for this seat.
|
|
*
|
|
* This request only takes effect if the seat has the keyboard
|
|
* capability, or has had the keyboard capability in the past.
|
|
* It is a protocol violation to issue this request on a seat that has
|
|
* never had the keyboard capability.
|
|
*/
|
|
static inline struct wl_keyboard *
|
|
wl_seat_get_keyboard(struct wl_seat *wl_seat)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_seat,
|
|
WL_SEAT_GET_KEYBOARD, &wl_keyboard_interface, NULL);
|
|
|
|
return (struct wl_keyboard *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*
|
|
* The ID provided will be initialized to the wl_touch interface
|
|
* for this seat.
|
|
*
|
|
* This request only takes effect if the seat has the touch
|
|
* capability, or has had the touch capability in the past.
|
|
* It is a protocol violation to issue this request on a seat that has
|
|
* never had the touch capability.
|
|
*/
|
|
static inline struct wl_touch *
|
|
wl_seat_get_touch(struct wl_seat *wl_seat)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_seat,
|
|
WL_SEAT_GET_TOUCH, &wl_touch_interface, NULL);
|
|
|
|
return (struct wl_touch *) id;
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_seat
|
|
*
|
|
* Using this request a client can tell the server that it is not going to
|
|
* use the seat object anymore.
|
|
*/
|
|
static inline void
|
|
wl_seat_release(struct wl_seat *wl_seat)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_seat,
|
|
WL_SEAT_RELEASE);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_seat);
|
|
}
|
|
|
|
#ifndef WL_POINTER_ERROR_ENUM
|
|
#define WL_POINTER_ERROR_ENUM
|
|
enum wl_pointer_error {
|
|
/**
|
|
* given wl_surface has another role
|
|
*/
|
|
WL_POINTER_ERROR_ROLE = 0,
|
|
};
|
|
#endif /* WL_POINTER_ERROR_ENUM */
|
|
|
|
#ifndef WL_POINTER_BUTTON_STATE_ENUM
|
|
#define WL_POINTER_BUTTON_STATE_ENUM
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
* physical button state
|
|
*
|
|
* Describes the physical state of a button that produced the button
|
|
* event.
|
|
*/
|
|
enum wl_pointer_button_state {
|
|
/**
|
|
* the button is not pressed
|
|
*/
|
|
WL_POINTER_BUTTON_STATE_RELEASED = 0,
|
|
/**
|
|
* the button is pressed
|
|
*/
|
|
WL_POINTER_BUTTON_STATE_PRESSED = 1,
|
|
};
|
|
#endif /* WL_POINTER_BUTTON_STATE_ENUM */
|
|
|
|
#ifndef WL_POINTER_AXIS_ENUM
|
|
#define WL_POINTER_AXIS_ENUM
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
* axis types
|
|
*
|
|
* Describes the axis types of scroll events.
|
|
*/
|
|
enum wl_pointer_axis {
|
|
/**
|
|
* vertical axis
|
|
*/
|
|
WL_POINTER_AXIS_VERTICAL_SCROLL = 0,
|
|
/**
|
|
* horizontal axis
|
|
*/
|
|
WL_POINTER_AXIS_HORIZONTAL_SCROLL = 1,
|
|
};
|
|
#endif /* WL_POINTER_AXIS_ENUM */
|
|
|
|
#ifndef WL_POINTER_AXIS_SOURCE_ENUM
|
|
#define WL_POINTER_AXIS_SOURCE_ENUM
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
* axis source types
|
|
*
|
|
* Describes the source types for axis events. This indicates to the
|
|
* client how an axis event was physically generated; a client may
|
|
* adjust the user interface accordingly. For example, scroll events
|
|
* from a "finger" source may be in a smooth coordinate space with
|
|
* kinetic scrolling whereas a "wheel" source may be in discrete steps
|
|
* of a number of lines.
|
|
*
|
|
* The "continuous" axis source is a device generating events in a
|
|
* continuous coordinate space, but using something other than a
|
|
* finger. One example for this source is button-based scrolling where
|
|
* the vertical motion of a device is converted to scroll events while
|
|
* a button is held down.
|
|
*
|
|
* The "wheel tilt" axis source indicates that the actual device is a
|
|
* wheel but the scroll event is not caused by a rotation but a
|
|
* (usually sideways) tilt of the wheel.
|
|
*/
|
|
enum wl_pointer_axis_source {
|
|
/**
|
|
* a physical wheel rotation
|
|
*/
|
|
WL_POINTER_AXIS_SOURCE_WHEEL = 0,
|
|
/**
|
|
* finger on a touch surface
|
|
*/
|
|
WL_POINTER_AXIS_SOURCE_FINGER = 1,
|
|
/**
|
|
* continuous coordinate space
|
|
*/
|
|
WL_POINTER_AXIS_SOURCE_CONTINUOUS = 2,
|
|
/**
|
|
* a physical wheel tilt
|
|
* @since 6
|
|
*/
|
|
WL_POINTER_AXIS_SOURCE_WHEEL_TILT = 3,
|
|
};
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_AXIS_SOURCE_WHEEL_TILT_SINCE_VERSION 6
|
|
#endif /* WL_POINTER_AXIS_SOURCE_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
* @struct wl_pointer_listener
|
|
*/
|
|
struct wl_pointer_listener {
|
|
/**
|
|
* enter event
|
|
*
|
|
* Notification that this seat's pointer is focused on a certain
|
|
* surface.
|
|
*
|
|
* When a seat's focus enters a surface, the pointer image is
|
|
* undefined and a client should respond to this event by setting
|
|
* an appropriate pointer image with the set_cursor request.
|
|
* @param serial serial number of the enter event
|
|
* @param surface surface entered by the pointer
|
|
* @param surface_x surface-local x coordinate
|
|
* @param surface_y surface-local y coordinate
|
|
*/
|
|
void (*enter)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t serial,
|
|
struct wl_surface *surface,
|
|
wl_fixed_t surface_x,
|
|
wl_fixed_t surface_y);
|
|
/**
|
|
* leave event
|
|
*
|
|
* Notification that this seat's pointer is no longer focused on
|
|
* a certain surface.
|
|
*
|
|
* The leave notification is sent before the enter notification for
|
|
* the new focus.
|
|
* @param serial serial number of the leave event
|
|
* @param surface surface left by the pointer
|
|
*/
|
|
void (*leave)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t serial,
|
|
struct wl_surface *surface);
|
|
/**
|
|
* pointer motion event
|
|
*
|
|
* Notification of pointer location change. The arguments
|
|
* surface_x and surface_y are the location relative to the focused
|
|
* surface.
|
|
* @param time timestamp with millisecond granularity
|
|
* @param surface_x surface-local x coordinate
|
|
* @param surface_y surface-local y coordinate
|
|
*/
|
|
void (*motion)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t time,
|
|
wl_fixed_t surface_x,
|
|
wl_fixed_t surface_y);
|
|
/**
|
|
* pointer button event
|
|
*
|
|
* Mouse button click and release notifications.
|
|
*
|
|
* The location of the click is given by the last motion or enter
|
|
* event. The time argument is a timestamp with millisecond
|
|
* granularity, with an undefined base.
|
|
*
|
|
* The button is a button code as defined in the Linux kernel's
|
|
* linux/input-event-codes.h header file, e.g. BTN_LEFT.
|
|
*
|
|
* Any 16-bit button code value is reserved for future additions to
|
|
* the kernel's event code list. All other button codes above
|
|
* 0xFFFF are currently undefined but may be used in future
|
|
* versions of this protocol.
|
|
* @param serial serial number of the button event
|
|
* @param time timestamp with millisecond granularity
|
|
* @param button button that produced the event
|
|
* @param state physical state of the button
|
|
*/
|
|
void (*button)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t serial,
|
|
uint32_t time,
|
|
uint32_t button,
|
|
uint32_t state);
|
|
/**
|
|
* axis event
|
|
*
|
|
* Scroll and other axis notifications.
|
|
*
|
|
* For scroll events (vertical and horizontal scroll axes), the
|
|
* value parameter is the length of a vector along the specified
|
|
* axis in a coordinate space identical to those of motion events,
|
|
* representing a relative movement along the specified axis.
|
|
*
|
|
* For devices that support movements non-parallel to axes multiple
|
|
* axis events will be emitted.
|
|
*
|
|
* When applicable, for example for touch pads, the server can
|
|
* choose to emit scroll events where the motion vector is
|
|
* equivalent to a motion event vector.
|
|
*
|
|
* When applicable, a client can transform its content relative to
|
|
* the scroll distance.
|
|
* @param time timestamp with millisecond granularity
|
|
* @param axis axis type
|
|
* @param value length of vector in surface-local coordinate space
|
|
*/
|
|
void (*axis)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t time,
|
|
uint32_t axis,
|
|
wl_fixed_t value);
|
|
/**
|
|
* end of a pointer event sequence
|
|
*
|
|
* Indicates the end of a set of events that logically belong
|
|
* together. A client is expected to accumulate the data in all
|
|
* events within the frame before proceeding.
|
|
*
|
|
* All wl_pointer events before a wl_pointer.frame event belong
|
|
* logically together. For example, in a diagonal scroll motion the
|
|
* compositor will send an optional wl_pointer.axis_source event,
|
|
* two wl_pointer.axis events (horizontal and vertical) and finally
|
|
* a wl_pointer.frame event. The client may use this information to
|
|
* calculate a diagonal vector for scrolling.
|
|
*
|
|
* When multiple wl_pointer.axis events occur within the same
|
|
* frame, the motion vector is the combined motion of all events.
|
|
* When a wl_pointer.axis and a wl_pointer.axis_stop event occur
|
|
* within the same frame, this indicates that axis movement in one
|
|
* axis has stopped but continues in the other axis. When multiple
|
|
* wl_pointer.axis_stop events occur within the same frame, this
|
|
* indicates that these axes stopped in the same instance.
|
|
*
|
|
* A wl_pointer.frame event is sent for every logical event group,
|
|
* even if the group only contains a single wl_pointer event.
|
|
* Specifically, a client may get a sequence: motion, frame,
|
|
* button, frame, axis, frame, axis_stop, frame.
|
|
*
|
|
* The wl_pointer.enter and wl_pointer.leave events are logical
|
|
* events generated by the compositor and not the hardware. These
|
|
* events are also grouped by a wl_pointer.frame. When a pointer
|
|
* moves from one surface to another, a compositor should group the
|
|
* wl_pointer.leave event within the same wl_pointer.frame.
|
|
* However, a client must not rely on wl_pointer.leave and
|
|
* wl_pointer.enter being in the same wl_pointer.frame.
|
|
* Compositor-specific policies may require the wl_pointer.leave
|
|
* and wl_pointer.enter event being split across multiple
|
|
* wl_pointer.frame groups.
|
|
* @since 5
|
|
*/
|
|
void (*frame)(void *data,
|
|
struct wl_pointer *wl_pointer);
|
|
/**
|
|
* axis source event
|
|
*
|
|
* Source information for scroll and other axes.
|
|
*
|
|
* This event does not occur on its own. It is sent before a
|
|
* wl_pointer.frame event and carries the source information for
|
|
* all events within that frame.
|
|
*
|
|
* The source specifies how this event was generated. If the source
|
|
* is wl_pointer.axis_source.finger, a wl_pointer.axis_stop event
|
|
* will be sent when the user lifts the finger off the device.
|
|
*
|
|
* If the source is wl_pointer.axis_source.wheel,
|
|
* wl_pointer.axis_source.wheel_tilt or
|
|
* wl_pointer.axis_source.continuous, a wl_pointer.axis_stop event
|
|
* may or may not be sent. Whether a compositor sends an axis_stop
|
|
* event for these sources is hardware-specific and
|
|
* implementation-dependent; clients must not rely on receiving an
|
|
* axis_stop event for these scroll sources and should treat scroll
|
|
* sequences from these scroll sources as unterminated by default.
|
|
*
|
|
* This event is optional. If the source is unknown for a
|
|
* particular axis event sequence, no event is sent. Only one
|
|
* wl_pointer.axis_source event is permitted per frame.
|
|
*
|
|
* The order of wl_pointer.axis_discrete and wl_pointer.axis_source
|
|
* is not guaranteed.
|
|
* @param axis_source source of the axis event
|
|
* @since 5
|
|
*/
|
|
void (*axis_source)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t axis_source);
|
|
/**
|
|
* axis stop event
|
|
*
|
|
* Stop notification for scroll and other axes.
|
|
*
|
|
* For some wl_pointer.axis_source types, a wl_pointer.axis_stop
|
|
* event is sent to notify a client that the axis sequence has
|
|
* terminated. This enables the client to implement kinetic
|
|
* scrolling. See the wl_pointer.axis_source documentation for
|
|
* information on when this event may be generated.
|
|
*
|
|
* Any wl_pointer.axis events with the same axis_source after this
|
|
* event should be considered as the start of a new axis motion.
|
|
*
|
|
* The timestamp is to be interpreted identical to the timestamp in
|
|
* the wl_pointer.axis event. The timestamp value may be the same
|
|
* as a preceding wl_pointer.axis event.
|
|
* @param time timestamp with millisecond granularity
|
|
* @param axis the axis stopped with this event
|
|
* @since 5
|
|
*/
|
|
void (*axis_stop)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t time,
|
|
uint32_t axis);
|
|
/**
|
|
* axis click event
|
|
*
|
|
* Discrete step information for scroll and other axes.
|
|
*
|
|
* This event carries the axis value of the wl_pointer.axis event
|
|
* in discrete steps (e.g. mouse wheel clicks).
|
|
*
|
|
* This event does not occur on its own, it is coupled with a
|
|
* wl_pointer.axis event that represents this axis value on a
|
|
* continuous scale. The protocol guarantees that each
|
|
* axis_discrete event is always followed by exactly one axis event
|
|
* with the same axis number within the same wl_pointer.frame. Note
|
|
* that the protocol allows for other events to occur between the
|
|
* axis_discrete and its coupled axis event, including other
|
|
* axis_discrete or axis events.
|
|
*
|
|
* This event is optional; continuous scrolling devices like
|
|
* two-finger scrolling on touchpads do not have discrete steps and
|
|
* do not generate this event.
|
|
*
|
|
* The discrete value carries the directional information. e.g. a
|
|
* value of -2 is two steps towards the negative direction of this
|
|
* axis.
|
|
*
|
|
* The axis number is identical to the axis number in the
|
|
* associated axis event.
|
|
*
|
|
* The order of wl_pointer.axis_discrete and wl_pointer.axis_source
|
|
* is not guaranteed.
|
|
* @param axis axis type
|
|
* @param discrete number of steps
|
|
* @since 5
|
|
*/
|
|
void (*axis_discrete)(void *data,
|
|
struct wl_pointer *wl_pointer,
|
|
uint32_t axis,
|
|
int32_t discrete);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
static inline int
|
|
wl_pointer_add_listener(struct wl_pointer *wl_pointer,
|
|
const struct wl_pointer_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_pointer,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_POINTER_SET_CURSOR 0
|
|
#define WL_POINTER_RELEASE 1
|
|
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_ENTER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_LEAVE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_MOTION_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_BUTTON_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_AXIS_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_FRAME_SINCE_VERSION 5
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_AXIS_SOURCE_SINCE_VERSION 5
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_AXIS_STOP_SINCE_VERSION 5
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_AXIS_DISCRETE_SINCE_VERSION 5
|
|
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_SET_CURSOR_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*/
|
|
#define WL_POINTER_RELEASE_SINCE_VERSION 3
|
|
|
|
/** @ingroup iface_wl_pointer */
|
|
static inline void
|
|
wl_pointer_set_user_data(struct wl_pointer *wl_pointer, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_pointer, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_pointer */
|
|
static inline void *
|
|
wl_pointer_get_user_data(struct wl_pointer *wl_pointer)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_pointer);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_pointer_get_version(struct wl_pointer *wl_pointer)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_pointer);
|
|
}
|
|
|
|
/** @ingroup iface_wl_pointer */
|
|
static inline void
|
|
wl_pointer_destroy(struct wl_pointer *wl_pointer)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_pointer);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*
|
|
* Set the pointer surface, i.e., the surface that contains the
|
|
* pointer image (cursor). This request gives the surface the role
|
|
* of a cursor. If the surface already has another role, it raises
|
|
* a protocol error.
|
|
*
|
|
* The cursor actually changes only if the pointer
|
|
* focus for this device is one of the requesting client's surfaces
|
|
* or the surface parameter is the current pointer surface. If
|
|
* there was a previous surface set with this request it is
|
|
* replaced. If surface is NULL, the pointer image is hidden.
|
|
*
|
|
* The parameters hotspot_x and hotspot_y define the position of
|
|
* the pointer surface relative to the pointer location. Its
|
|
* top-left corner is always at (x, y) - (hotspot_x, hotspot_y),
|
|
* where (x, y) are the coordinates of the pointer location, in
|
|
* surface-local coordinates.
|
|
*
|
|
* On surface.attach requests to the pointer surface, hotspot_x
|
|
* and hotspot_y are decremented by the x and y parameters
|
|
* passed to the request. Attach must be confirmed by
|
|
* wl_surface.commit as usual.
|
|
*
|
|
* The hotspot can also be updated by passing the currently set
|
|
* pointer surface to this request with new values for hotspot_x
|
|
* and hotspot_y.
|
|
*
|
|
* The current and pending input regions of the wl_surface are
|
|
* cleared, and wl_surface.set_input_region is ignored until the
|
|
* wl_surface is no longer used as the cursor. When the use as a
|
|
* cursor ends, the current and pending input regions become
|
|
* undefined, and the wl_surface is unmapped.
|
|
*/
|
|
static inline void
|
|
wl_pointer_set_cursor(struct wl_pointer *wl_pointer, uint32_t serial, struct wl_surface *surface, int32_t hotspot_x, int32_t hotspot_y)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_pointer,
|
|
WL_POINTER_SET_CURSOR, serial, surface, hotspot_x, hotspot_y);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_pointer
|
|
*
|
|
* Using this request a client can tell the server that it is not going to
|
|
* use the pointer object anymore.
|
|
*
|
|
* This request destroys the pointer proxy object, so clients must not call
|
|
* wl_pointer_destroy() after using this request.
|
|
*/
|
|
static inline void
|
|
wl_pointer_release(struct wl_pointer *wl_pointer)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_pointer,
|
|
WL_POINTER_RELEASE);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_pointer);
|
|
}
|
|
|
|
#ifndef WL_KEYBOARD_KEYMAP_FORMAT_ENUM
|
|
#define WL_KEYBOARD_KEYMAP_FORMAT_ENUM
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
* keyboard mapping format
|
|
*
|
|
* This specifies the format of the keymap provided to the
|
|
* client with the wl_keyboard.keymap event.
|
|
*/
|
|
enum wl_keyboard_keymap_format {
|
|
/**
|
|
* no keymap; client must understand how to interpret the raw keycode
|
|
*/
|
|
WL_KEYBOARD_KEYMAP_FORMAT_NO_KEYMAP = 0,
|
|
/**
|
|
* libxkbcommon compatible; to determine the xkb keycode, clients must add 8 to the key event keycode
|
|
*/
|
|
WL_KEYBOARD_KEYMAP_FORMAT_XKB_V1 = 1,
|
|
};
|
|
#endif /* WL_KEYBOARD_KEYMAP_FORMAT_ENUM */
|
|
|
|
#ifndef WL_KEYBOARD_KEY_STATE_ENUM
|
|
#define WL_KEYBOARD_KEY_STATE_ENUM
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
* physical key state
|
|
*
|
|
* Describes the physical state of a key that produced the key event.
|
|
*/
|
|
enum wl_keyboard_key_state {
|
|
/**
|
|
* key is not pressed
|
|
*/
|
|
WL_KEYBOARD_KEY_STATE_RELEASED = 0,
|
|
/**
|
|
* key is pressed
|
|
*/
|
|
WL_KEYBOARD_KEY_STATE_PRESSED = 1,
|
|
};
|
|
#endif /* WL_KEYBOARD_KEY_STATE_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
* @struct wl_keyboard_listener
|
|
*/
|
|
struct wl_keyboard_listener {
|
|
/**
|
|
* keyboard mapping
|
|
*
|
|
* This event provides a file descriptor to the client which can
|
|
* be memory-mapped to provide a keyboard mapping description.
|
|
* @param format keymap format
|
|
* @param fd keymap file descriptor
|
|
* @param size keymap size, in bytes
|
|
*/
|
|
void (*keymap)(void *data,
|
|
struct wl_keyboard *wl_keyboard,
|
|
uint32_t format,
|
|
int32_t fd,
|
|
uint32_t size);
|
|
/**
|
|
* enter event
|
|
*
|
|
* Notification that this seat's keyboard focus is on a certain
|
|
* surface.
|
|
* @param serial serial number of the enter event
|
|
* @param surface surface gaining keyboard focus
|
|
* @param keys the currently pressed keys
|
|
*/
|
|
void (*enter)(void *data,
|
|
struct wl_keyboard *wl_keyboard,
|
|
uint32_t serial,
|
|
struct wl_surface *surface,
|
|
struct wl_array *keys);
|
|
/**
|
|
* leave event
|
|
*
|
|
* Notification that this seat's keyboard focus is no longer on a
|
|
* certain surface.
|
|
*
|
|
* The leave notification is sent before the enter notification for
|
|
* the new focus.
|
|
* @param serial serial number of the leave event
|
|
* @param surface surface that lost keyboard focus
|
|
*/
|
|
void (*leave)(void *data,
|
|
struct wl_keyboard *wl_keyboard,
|
|
uint32_t serial,
|
|
struct wl_surface *surface);
|
|
/**
|
|
* key event
|
|
*
|
|
* A key was pressed or released. The time argument is a
|
|
* timestamp with millisecond granularity, with an undefined base.
|
|
* @param serial serial number of the key event
|
|
* @param time timestamp with millisecond granularity
|
|
* @param key key that produced the event
|
|
* @param state physical state of the key
|
|
*/
|
|
void (*key)(void *data,
|
|
struct wl_keyboard *wl_keyboard,
|
|
uint32_t serial,
|
|
uint32_t time,
|
|
uint32_t key,
|
|
uint32_t state);
|
|
/**
|
|
* modifier and group state
|
|
*
|
|
* Notifies clients that the modifier and/or group state has
|
|
* changed, and it should update its local state.
|
|
* @param serial serial number of the modifiers event
|
|
* @param mods_depressed depressed modifiers
|
|
* @param mods_latched latched modifiers
|
|
* @param mods_locked locked modifiers
|
|
* @param group keyboard layout
|
|
*/
|
|
void (*modifiers)(void *data,
|
|
struct wl_keyboard *wl_keyboard,
|
|
uint32_t serial,
|
|
uint32_t mods_depressed,
|
|
uint32_t mods_latched,
|
|
uint32_t mods_locked,
|
|
uint32_t group);
|
|
/**
|
|
* repeat rate and delay
|
|
*
|
|
* Informs the client about the keyboard's repeat rate and delay.
|
|
*
|
|
* This event is sent as soon as the wl_keyboard object has been
|
|
* created, and is guaranteed to be received by the client before
|
|
* any key press event.
|
|
*
|
|
* Negative values for either rate or delay are illegal. A rate of
|
|
* zero will disable any repeating (regardless of the value of
|
|
* delay).
|
|
*
|
|
* This event can be sent later on as well with a new value if
|
|
* necessary, so clients should continue listening for the event
|
|
* past the creation of wl_keyboard.
|
|
* @param rate the rate of repeating keys in characters per second
|
|
* @param delay delay in milliseconds since key down until repeating starts
|
|
* @since 4
|
|
*/
|
|
void (*repeat_info)(void *data,
|
|
struct wl_keyboard *wl_keyboard,
|
|
int32_t rate,
|
|
int32_t delay);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
static inline int
|
|
wl_keyboard_add_listener(struct wl_keyboard *wl_keyboard,
|
|
const struct wl_keyboard_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_keyboard,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_KEYBOARD_RELEASE 0
|
|
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
#define WL_KEYBOARD_KEYMAP_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
#define WL_KEYBOARD_ENTER_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
#define WL_KEYBOARD_LEAVE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
#define WL_KEYBOARD_KEY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
#define WL_KEYBOARD_MODIFIERS_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
#define WL_KEYBOARD_REPEAT_INFO_SINCE_VERSION 4
|
|
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
#define WL_KEYBOARD_RELEASE_SINCE_VERSION 3
|
|
|
|
/** @ingroup iface_wl_keyboard */
|
|
static inline void
|
|
wl_keyboard_set_user_data(struct wl_keyboard *wl_keyboard, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_keyboard, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_keyboard */
|
|
static inline void *
|
|
wl_keyboard_get_user_data(struct wl_keyboard *wl_keyboard)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_keyboard);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_keyboard_get_version(struct wl_keyboard *wl_keyboard)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_keyboard);
|
|
}
|
|
|
|
/** @ingroup iface_wl_keyboard */
|
|
static inline void
|
|
wl_keyboard_destroy(struct wl_keyboard *wl_keyboard)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_keyboard);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_keyboard
|
|
*/
|
|
static inline void
|
|
wl_keyboard_release(struct wl_keyboard *wl_keyboard)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_keyboard,
|
|
WL_KEYBOARD_RELEASE);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_keyboard);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
* @struct wl_touch_listener
|
|
*/
|
|
struct wl_touch_listener {
|
|
/**
|
|
* touch down event and beginning of a touch sequence
|
|
*
|
|
* A new touch point has appeared on the surface. This touch
|
|
* point is assigned a unique ID. Future events from this touch
|
|
* point reference this ID. The ID ceases to be valid after a touch
|
|
* up event and may be reused in the future.
|
|
* @param serial serial number of the touch down event
|
|
* @param time timestamp with millisecond granularity
|
|
* @param surface surface touched
|
|
* @param id the unique ID of this touch point
|
|
* @param x surface-local x coordinate
|
|
* @param y surface-local y coordinate
|
|
*/
|
|
void (*down)(void *data,
|
|
struct wl_touch *wl_touch,
|
|
uint32_t serial,
|
|
uint32_t time,
|
|
struct wl_surface *surface,
|
|
int32_t id,
|
|
wl_fixed_t x,
|
|
wl_fixed_t y);
|
|
/**
|
|
* end of a touch event sequence
|
|
*
|
|
* The touch point has disappeared. No further events will be
|
|
* sent for this touch point and the touch point's ID is released
|
|
* and may be reused in a future touch down event.
|
|
* @param serial serial number of the touch up event
|
|
* @param time timestamp with millisecond granularity
|
|
* @param id the unique ID of this touch point
|
|
*/
|
|
void (*up)(void *data,
|
|
struct wl_touch *wl_touch,
|
|
uint32_t serial,
|
|
uint32_t time,
|
|
int32_t id);
|
|
/**
|
|
* update of touch point coordinates
|
|
*
|
|
* A touch point has changed coordinates.
|
|
* @param time timestamp with millisecond granularity
|
|
* @param id the unique ID of this touch point
|
|
* @param x surface-local x coordinate
|
|
* @param y surface-local y coordinate
|
|
*/
|
|
void (*motion)(void *data,
|
|
struct wl_touch *wl_touch,
|
|
uint32_t time,
|
|
int32_t id,
|
|
wl_fixed_t x,
|
|
wl_fixed_t y);
|
|
/**
|
|
* end of touch frame event
|
|
*
|
|
* Indicates the end of a set of events that logically belong
|
|
* together. A client is expected to accumulate the data in all
|
|
* events within the frame before proceeding.
|
|
*
|
|
* A wl_touch.frame terminates at least one event but otherwise no
|
|
* guarantee is provided about the set of events within a frame. A
|
|
* client must assume that any state not updated in a frame is
|
|
* unchanged from the previously known state.
|
|
*/
|
|
void (*frame)(void *data,
|
|
struct wl_touch *wl_touch);
|
|
/**
|
|
* touch session cancelled
|
|
*
|
|
* Sent if the compositor decides the touch stream is a global
|
|
* gesture. No further events are sent to the clients from that
|
|
* particular gesture. Touch cancellation applies to all touch
|
|
* points currently active on this client's surface. The client is
|
|
* responsible for finalizing the touch points, future touch points
|
|
* on this surface may reuse the touch point ID.
|
|
*/
|
|
void (*cancel)(void *data,
|
|
struct wl_touch *wl_touch);
|
|
/**
|
|
* update shape of touch point
|
|
*
|
|
* Sent when a touchpoint has changed its shape.
|
|
*
|
|
* This event does not occur on its own. It is sent before a
|
|
* wl_touch.frame event and carries the new shape information for
|
|
* any previously reported, or new touch points of that frame.
|
|
*
|
|
* Other events describing the touch point such as wl_touch.down,
|
|
* wl_touch.motion or wl_touch.orientation may be sent within the
|
|
* same wl_touch.frame. A client should treat these events as a
|
|
* single logical touch point update. The order of wl_touch.shape,
|
|
* wl_touch.orientation and wl_touch.motion is not guaranteed. A
|
|
* wl_touch.down event is guaranteed to occur before the first
|
|
* wl_touch.shape event for this touch ID but both events may occur
|
|
* within the same wl_touch.frame.
|
|
*
|
|
* A touchpoint shape is approximated by an ellipse through the
|
|
* major and minor axis length. The major axis length describes the
|
|
* longer diameter of the ellipse, while the minor axis length
|
|
* describes the shorter diameter. Major and minor are orthogonal
|
|
* and both are specified in surface-local coordinates. The center
|
|
* of the ellipse is always at the touchpoint location as reported
|
|
* by wl_touch.down or wl_touch.move.
|
|
*
|
|
* This event is only sent by the compositor if the touch device
|
|
* supports shape reports. The client has to make reasonable
|
|
* assumptions about the shape if it did not receive this event.
|
|
* @param id the unique ID of this touch point
|
|
* @param major length of the major axis in surface-local coordinates
|
|
* @param minor length of the minor axis in surface-local coordinates
|
|
* @since 6
|
|
*/
|
|
void (*shape)(void *data,
|
|
struct wl_touch *wl_touch,
|
|
int32_t id,
|
|
wl_fixed_t major,
|
|
wl_fixed_t minor);
|
|
/**
|
|
* update orientation of touch point
|
|
*
|
|
* Sent when a touchpoint has changed its orientation.
|
|
*
|
|
* This event does not occur on its own. It is sent before a
|
|
* wl_touch.frame event and carries the new shape information for
|
|
* any previously reported, or new touch points of that frame.
|
|
*
|
|
* Other events describing the touch point such as wl_touch.down,
|
|
* wl_touch.motion or wl_touch.shape may be sent within the same
|
|
* wl_touch.frame. A client should treat these events as a single
|
|
* logical touch point update. The order of wl_touch.shape,
|
|
* wl_touch.orientation and wl_touch.motion is not guaranteed. A
|
|
* wl_touch.down event is guaranteed to occur before the first
|
|
* wl_touch.orientation event for this touch ID but both events may
|
|
* occur within the same wl_touch.frame.
|
|
*
|
|
* The orientation describes the clockwise angle of a touchpoint's
|
|
* major axis to the positive surface y-axis and is normalized to
|
|
* the -180 to +180 degree range. The granularity of orientation
|
|
* depends on the touch device, some devices only support binary
|
|
* rotation values between 0 and 90 degrees.
|
|
*
|
|
* This event is only sent by the compositor if the touch device
|
|
* supports orientation reports.
|
|
* @param id the unique ID of this touch point
|
|
* @param orientation angle between major axis and positive surface y-axis in degrees
|
|
* @since 6
|
|
*/
|
|
void (*orientation)(void *data,
|
|
struct wl_touch *wl_touch,
|
|
int32_t id,
|
|
wl_fixed_t orientation);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
static inline int
|
|
wl_touch_add_listener(struct wl_touch *wl_touch,
|
|
const struct wl_touch_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_touch,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_TOUCH_RELEASE 0
|
|
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_DOWN_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_UP_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_MOTION_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_FRAME_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_CANCEL_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_SHAPE_SINCE_VERSION 6
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_ORIENTATION_SINCE_VERSION 6
|
|
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
#define WL_TOUCH_RELEASE_SINCE_VERSION 3
|
|
|
|
/** @ingroup iface_wl_touch */
|
|
static inline void
|
|
wl_touch_set_user_data(struct wl_touch *wl_touch, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_touch, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_touch */
|
|
static inline void *
|
|
wl_touch_get_user_data(struct wl_touch *wl_touch)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_touch);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_touch_get_version(struct wl_touch *wl_touch)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_touch);
|
|
}
|
|
|
|
/** @ingroup iface_wl_touch */
|
|
static inline void
|
|
wl_touch_destroy(struct wl_touch *wl_touch)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_touch);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_touch
|
|
*/
|
|
static inline void
|
|
wl_touch_release(struct wl_touch *wl_touch)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_touch,
|
|
WL_TOUCH_RELEASE);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_touch);
|
|
}
|
|
|
|
#ifndef WL_OUTPUT_SUBPIXEL_ENUM
|
|
#define WL_OUTPUT_SUBPIXEL_ENUM
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
* subpixel geometry information
|
|
*
|
|
* This enumeration describes how the physical
|
|
* pixels on an output are laid out.
|
|
*/
|
|
enum wl_output_subpixel {
|
|
/**
|
|
* unknown geometry
|
|
*/
|
|
WL_OUTPUT_SUBPIXEL_UNKNOWN = 0,
|
|
/**
|
|
* no geometry
|
|
*/
|
|
WL_OUTPUT_SUBPIXEL_NONE = 1,
|
|
/**
|
|
* horizontal RGB
|
|
*/
|
|
WL_OUTPUT_SUBPIXEL_HORIZONTAL_RGB = 2,
|
|
/**
|
|
* horizontal BGR
|
|
*/
|
|
WL_OUTPUT_SUBPIXEL_HORIZONTAL_BGR = 3,
|
|
/**
|
|
* vertical RGB
|
|
*/
|
|
WL_OUTPUT_SUBPIXEL_VERTICAL_RGB = 4,
|
|
/**
|
|
* vertical BGR
|
|
*/
|
|
WL_OUTPUT_SUBPIXEL_VERTICAL_BGR = 5,
|
|
};
|
|
#endif /* WL_OUTPUT_SUBPIXEL_ENUM */
|
|
|
|
#ifndef WL_OUTPUT_TRANSFORM_ENUM
|
|
#define WL_OUTPUT_TRANSFORM_ENUM
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
* transform from framebuffer to output
|
|
*
|
|
* This describes the transform that a compositor will apply to a
|
|
* surface to compensate for the rotation or mirroring of an
|
|
* output device.
|
|
*
|
|
* The flipped values correspond to an initial flip around a
|
|
* vertical axis followed by rotation.
|
|
*
|
|
* The purpose is mainly to allow clients to render accordingly and
|
|
* tell the compositor, so that for fullscreen surfaces, the
|
|
* compositor will still be able to scan out directly from client
|
|
* surfaces.
|
|
*/
|
|
enum wl_output_transform {
|
|
/**
|
|
* no transform
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_NORMAL = 0,
|
|
/**
|
|
* 90 degrees counter-clockwise
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_90 = 1,
|
|
/**
|
|
* 180 degrees counter-clockwise
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_180 = 2,
|
|
/**
|
|
* 270 degrees counter-clockwise
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_270 = 3,
|
|
/**
|
|
* 180 degree flip around a vertical axis
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_FLIPPED = 4,
|
|
/**
|
|
* flip and rotate 90 degrees counter-clockwise
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_FLIPPED_90 = 5,
|
|
/**
|
|
* flip and rotate 180 degrees counter-clockwise
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_FLIPPED_180 = 6,
|
|
/**
|
|
* flip and rotate 270 degrees counter-clockwise
|
|
*/
|
|
WL_OUTPUT_TRANSFORM_FLIPPED_270 = 7,
|
|
};
|
|
#endif /* WL_OUTPUT_TRANSFORM_ENUM */
|
|
|
|
#ifndef WL_OUTPUT_MODE_ENUM
|
|
#define WL_OUTPUT_MODE_ENUM
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
* mode information
|
|
*
|
|
* These flags describe properties of an output mode.
|
|
* They are used in the flags bitfield of the mode event.
|
|
*/
|
|
enum wl_output_mode {
|
|
/**
|
|
* indicates this is the current mode
|
|
*/
|
|
WL_OUTPUT_MODE_CURRENT = 0x1,
|
|
/**
|
|
* indicates this is the preferred mode
|
|
*/
|
|
WL_OUTPUT_MODE_PREFERRED = 0x2,
|
|
};
|
|
#endif /* WL_OUTPUT_MODE_ENUM */
|
|
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
* @struct wl_output_listener
|
|
*/
|
|
struct wl_output_listener {
|
|
/**
|
|
* properties of the output
|
|
*
|
|
* The geometry event describes geometric properties of the
|
|
* output. The event is sent when binding to the output object and
|
|
* whenever any of the properties change.
|
|
* @param x x position within the global compositor space
|
|
* @param y y position within the global compositor space
|
|
* @param physical_width width in millimeters of the output
|
|
* @param physical_height height in millimeters of the output
|
|
* @param subpixel subpixel orientation of the output
|
|
* @param make textual description of the manufacturer
|
|
* @param model textual description of the model
|
|
* @param transform transform that maps framebuffer to output
|
|
*/
|
|
void (*geometry)(void *data,
|
|
struct wl_output *wl_output,
|
|
int32_t x,
|
|
int32_t y,
|
|
int32_t physical_width,
|
|
int32_t physical_height,
|
|
int32_t subpixel,
|
|
const char *make,
|
|
const char *model,
|
|
int32_t transform);
|
|
/**
|
|
* advertise available modes for the output
|
|
*
|
|
* The mode event describes an available mode for the output.
|
|
*
|
|
* The event is sent when binding to the output object and there
|
|
* will always be one mode, the current mode. The event is sent
|
|
* again if an output changes mode, for the mode that is now
|
|
* current. In other words, the current mode is always the last
|
|
* mode that was received with the current flag set.
|
|
*
|
|
* The size of a mode is given in physical hardware units of the
|
|
* output device. This is not necessarily the same as the output
|
|
* size in the global compositor space. For instance, the output
|
|
* may be scaled, as described in wl_output.scale, or transformed,
|
|
* as described in wl_output.transform.
|
|
* @param flags bitfield of mode flags
|
|
* @param width width of the mode in hardware units
|
|
* @param height height of the mode in hardware units
|
|
* @param refresh vertical refresh rate in mHz
|
|
*/
|
|
void (*mode)(void *data,
|
|
struct wl_output *wl_output,
|
|
uint32_t flags,
|
|
int32_t width,
|
|
int32_t height,
|
|
int32_t refresh);
|
|
/**
|
|
* sent all information about output
|
|
*
|
|
* This event is sent after all other properties have been sent
|
|
* after binding to the output object and after any other property
|
|
* changes done after that. This allows changes to the output
|
|
* properties to be seen as atomic, even if they happen via
|
|
* multiple events.
|
|
* @since 2
|
|
*/
|
|
void (*done)(void *data,
|
|
struct wl_output *wl_output);
|
|
/**
|
|
* output scaling properties
|
|
*
|
|
* This event contains scaling geometry information that is not
|
|
* in the geometry event. It may be sent after binding the output
|
|
* object or if the output scale changes later. If it is not sent,
|
|
* the client should assume a scale of 1.
|
|
*
|
|
* A scale larger than 1 means that the compositor will
|
|
* automatically scale surface buffers by this amount when
|
|
* rendering. This is used for very high resolution displays where
|
|
* applications rendering at the native resolution would be too
|
|
* small to be legible.
|
|
*
|
|
* It is intended that scaling aware clients track the current
|
|
* output of a surface, and if it is on a scaled output it should
|
|
* use wl_surface.set_buffer_scale with the scale of the output.
|
|
* That way the compositor can avoid scaling the surface, and the
|
|
* client can supply a higher detail image.
|
|
* @param factor scaling factor of output
|
|
* @since 2
|
|
*/
|
|
void (*scale)(void *data,
|
|
struct wl_output *wl_output,
|
|
int32_t factor);
|
|
};
|
|
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
*/
|
|
static inline int
|
|
wl_output_add_listener(struct wl_output *wl_output,
|
|
const struct wl_output_listener *listener, void *data)
|
|
{
|
|
return wl_proxy_add_listener((struct wl_proxy *) wl_output,
|
|
(void (**)(void)) listener, data);
|
|
}
|
|
|
|
#define WL_OUTPUT_RELEASE 0
|
|
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
*/
|
|
#define WL_OUTPUT_GEOMETRY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
*/
|
|
#define WL_OUTPUT_MODE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
*/
|
|
#define WL_OUTPUT_DONE_SINCE_VERSION 2
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
*/
|
|
#define WL_OUTPUT_SCALE_SINCE_VERSION 2
|
|
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
*/
|
|
#define WL_OUTPUT_RELEASE_SINCE_VERSION 3
|
|
|
|
/** @ingroup iface_wl_output */
|
|
static inline void
|
|
wl_output_set_user_data(struct wl_output *wl_output, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_output, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_output */
|
|
static inline void *
|
|
wl_output_get_user_data(struct wl_output *wl_output)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_output);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_output_get_version(struct wl_output *wl_output)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_output);
|
|
}
|
|
|
|
/** @ingroup iface_wl_output */
|
|
static inline void
|
|
wl_output_destroy(struct wl_output *wl_output)
|
|
{
|
|
wl_proxy_destroy((struct wl_proxy *) wl_output);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_output
|
|
*
|
|
* Using this request a client can tell the server that it is not going to
|
|
* use the output object anymore.
|
|
*/
|
|
static inline void
|
|
wl_output_release(struct wl_output *wl_output)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_output,
|
|
WL_OUTPUT_RELEASE);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_output);
|
|
}
|
|
|
|
#define WL_REGION_DESTROY 0
|
|
#define WL_REGION_ADD 1
|
|
#define WL_REGION_SUBTRACT 2
|
|
|
|
|
|
/**
|
|
* @ingroup iface_wl_region
|
|
*/
|
|
#define WL_REGION_DESTROY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_region
|
|
*/
|
|
#define WL_REGION_ADD_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_region
|
|
*/
|
|
#define WL_REGION_SUBTRACT_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_region */
|
|
static inline void
|
|
wl_region_set_user_data(struct wl_region *wl_region, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_region, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_region */
|
|
static inline void *
|
|
wl_region_get_user_data(struct wl_region *wl_region)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_region);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_region_get_version(struct wl_region *wl_region)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_region);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_region
|
|
*
|
|
* Destroy the region. This will invalidate the object ID.
|
|
*/
|
|
static inline void
|
|
wl_region_destroy(struct wl_region *wl_region)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_region,
|
|
WL_REGION_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_region);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_region
|
|
*
|
|
* Add the specified rectangle to the region.
|
|
*/
|
|
static inline void
|
|
wl_region_add(struct wl_region *wl_region, int32_t x, int32_t y, int32_t width, int32_t height)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_region,
|
|
WL_REGION_ADD, x, y, width, height);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_region
|
|
*
|
|
* Subtract the specified rectangle from the region.
|
|
*/
|
|
static inline void
|
|
wl_region_subtract(struct wl_region *wl_region, int32_t x, int32_t y, int32_t width, int32_t height)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_region,
|
|
WL_REGION_SUBTRACT, x, y, width, height);
|
|
}
|
|
|
|
#ifndef WL_SUBCOMPOSITOR_ERROR_ENUM
|
|
#define WL_SUBCOMPOSITOR_ERROR_ENUM
|
|
enum wl_subcompositor_error {
|
|
/**
|
|
* the to-be sub-surface is invalid
|
|
*/
|
|
WL_SUBCOMPOSITOR_ERROR_BAD_SURFACE = 0,
|
|
};
|
|
#endif /* WL_SUBCOMPOSITOR_ERROR_ENUM */
|
|
|
|
#define WL_SUBCOMPOSITOR_DESTROY 0
|
|
#define WL_SUBCOMPOSITOR_GET_SUBSURFACE 1
|
|
|
|
|
|
/**
|
|
* @ingroup iface_wl_subcompositor
|
|
*/
|
|
#define WL_SUBCOMPOSITOR_DESTROY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_subcompositor
|
|
*/
|
|
#define WL_SUBCOMPOSITOR_GET_SUBSURFACE_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_subcompositor */
|
|
static inline void
|
|
wl_subcompositor_set_user_data(struct wl_subcompositor *wl_subcompositor, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_subcompositor, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_subcompositor */
|
|
static inline void *
|
|
wl_subcompositor_get_user_data(struct wl_subcompositor *wl_subcompositor)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_subcompositor);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_subcompositor_get_version(struct wl_subcompositor *wl_subcompositor)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_subcompositor);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subcompositor
|
|
*
|
|
* Informs the server that the client will not be using this
|
|
* protocol object anymore. This does not affect any other
|
|
* objects, wl_subsurface objects included.
|
|
*/
|
|
static inline void
|
|
wl_subcompositor_destroy(struct wl_subcompositor *wl_subcompositor)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_subcompositor,
|
|
WL_SUBCOMPOSITOR_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_subcompositor);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subcompositor
|
|
*
|
|
* Create a sub-surface interface for the given surface, and
|
|
* associate it with the given parent surface. This turns a
|
|
* plain wl_surface into a sub-surface.
|
|
*
|
|
* The to-be sub-surface must not already have another role, and it
|
|
* must not have an existing wl_subsurface object. Otherwise a protocol
|
|
* error is raised.
|
|
*/
|
|
static inline struct wl_subsurface *
|
|
wl_subcompositor_get_subsurface(struct wl_subcompositor *wl_subcompositor, struct wl_surface *surface, struct wl_surface *parent)
|
|
{
|
|
struct wl_proxy *id;
|
|
|
|
id = wl_proxy_marshal_constructor((struct wl_proxy *) wl_subcompositor,
|
|
WL_SUBCOMPOSITOR_GET_SUBSURFACE, &wl_subsurface_interface, NULL, surface, parent);
|
|
|
|
return (struct wl_subsurface *) id;
|
|
}
|
|
|
|
#ifndef WL_SUBSURFACE_ERROR_ENUM
|
|
#define WL_SUBSURFACE_ERROR_ENUM
|
|
enum wl_subsurface_error {
|
|
/**
|
|
* wl_surface is not a sibling or the parent
|
|
*/
|
|
WL_SUBSURFACE_ERROR_BAD_SURFACE = 0,
|
|
};
|
|
#endif /* WL_SUBSURFACE_ERROR_ENUM */
|
|
|
|
#define WL_SUBSURFACE_DESTROY 0
|
|
#define WL_SUBSURFACE_SET_POSITION 1
|
|
#define WL_SUBSURFACE_PLACE_ABOVE 2
|
|
#define WL_SUBSURFACE_PLACE_BELOW 3
|
|
#define WL_SUBSURFACE_SET_SYNC 4
|
|
#define WL_SUBSURFACE_SET_DESYNC 5
|
|
|
|
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*/
|
|
#define WL_SUBSURFACE_DESTROY_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*/
|
|
#define WL_SUBSURFACE_SET_POSITION_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*/
|
|
#define WL_SUBSURFACE_PLACE_ABOVE_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*/
|
|
#define WL_SUBSURFACE_PLACE_BELOW_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*/
|
|
#define WL_SUBSURFACE_SET_SYNC_SINCE_VERSION 1
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*/
|
|
#define WL_SUBSURFACE_SET_DESYNC_SINCE_VERSION 1
|
|
|
|
/** @ingroup iface_wl_subsurface */
|
|
static inline void
|
|
wl_subsurface_set_user_data(struct wl_subsurface *wl_subsurface, void *user_data)
|
|
{
|
|
wl_proxy_set_user_data((struct wl_proxy *) wl_subsurface, user_data);
|
|
}
|
|
|
|
/** @ingroup iface_wl_subsurface */
|
|
static inline void *
|
|
wl_subsurface_get_user_data(struct wl_subsurface *wl_subsurface)
|
|
{
|
|
return wl_proxy_get_user_data((struct wl_proxy *) wl_subsurface);
|
|
}
|
|
|
|
static inline uint32_t
|
|
wl_subsurface_get_version(struct wl_subsurface *wl_subsurface)
|
|
{
|
|
return wl_proxy_get_version((struct wl_proxy *) wl_subsurface);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*
|
|
* The sub-surface interface is removed from the wl_surface object
|
|
* that was turned into a sub-surface with a
|
|
* wl_subcompositor.get_subsurface request. The wl_surface's association
|
|
* to the parent is deleted, and the wl_surface loses its role as
|
|
* a sub-surface. The wl_surface is unmapped.
|
|
*/
|
|
static inline void
|
|
wl_subsurface_destroy(struct wl_subsurface *wl_subsurface)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_subsurface,
|
|
WL_SUBSURFACE_DESTROY);
|
|
|
|
wl_proxy_destroy((struct wl_proxy *) wl_subsurface);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*
|
|
* This schedules a sub-surface position change.
|
|
* The sub-surface will be moved so that its origin (top left
|
|
* corner pixel) will be at the location x, y of the parent surface
|
|
* coordinate system. The coordinates are not restricted to the parent
|
|
* surface area. Negative values are allowed.
|
|
*
|
|
* The scheduled coordinates will take effect whenever the state of the
|
|
* parent surface is applied. When this happens depends on whether the
|
|
* parent surface is in synchronized mode or not. See
|
|
* wl_subsurface.set_sync and wl_subsurface.set_desync for details.
|
|
*
|
|
* If more than one set_position request is invoked by the client before
|
|
* the commit of the parent surface, the position of a new request always
|
|
* replaces the scheduled position from any previous request.
|
|
*
|
|
* The initial position is 0, 0.
|
|
*/
|
|
static inline void
|
|
wl_subsurface_set_position(struct wl_subsurface *wl_subsurface, int32_t x, int32_t y)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_subsurface,
|
|
WL_SUBSURFACE_SET_POSITION, x, y);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*
|
|
* This sub-surface is taken from the stack, and put back just
|
|
* above the reference surface, changing the z-order of the sub-surfaces.
|
|
* The reference surface must be one of the sibling surfaces, or the
|
|
* parent surface. Using any other surface, including this sub-surface,
|
|
* will cause a protocol error.
|
|
*
|
|
* The z-order is double-buffered. Requests are handled in order and
|
|
* applied immediately to a pending state. The final pending state is
|
|
* copied to the active state the next time the state of the parent
|
|
* surface is applied. When this happens depends on whether the parent
|
|
* surface is in synchronized mode or not. See wl_subsurface.set_sync and
|
|
* wl_subsurface.set_desync for details.
|
|
*
|
|
* A new sub-surface is initially added as the top-most in the stack
|
|
* of its siblings and parent.
|
|
*/
|
|
static inline void
|
|
wl_subsurface_place_above(struct wl_subsurface *wl_subsurface, struct wl_surface *sibling)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_subsurface,
|
|
WL_SUBSURFACE_PLACE_ABOVE, sibling);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*
|
|
* The sub-surface is placed just below the reference surface.
|
|
* See wl_subsurface.place_above.
|
|
*/
|
|
static inline void
|
|
wl_subsurface_place_below(struct wl_subsurface *wl_subsurface, struct wl_surface *sibling)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_subsurface,
|
|
WL_SUBSURFACE_PLACE_BELOW, sibling);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*
|
|
* Change the commit behaviour of the sub-surface to synchronized
|
|
* mode, also described as the parent dependent mode.
|
|
*
|
|
* In synchronized mode, wl_surface.commit on a sub-surface will
|
|
* accumulate the committed state in a cache, but the state will
|
|
* not be applied and hence will not change the compositor output.
|
|
* The cached state is applied to the sub-surface immediately after
|
|
* the parent surface's state is applied. This ensures atomic
|
|
* updates of the parent and all its synchronized sub-surfaces.
|
|
* Applying the cached state will invalidate the cache, so further
|
|
* parent surface commits do not (re-)apply old state.
|
|
*
|
|
* See wl_subsurface for the recursive effect of this mode.
|
|
*/
|
|
static inline void
|
|
wl_subsurface_set_sync(struct wl_subsurface *wl_subsurface)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_subsurface,
|
|
WL_SUBSURFACE_SET_SYNC);
|
|
}
|
|
|
|
/**
|
|
* @ingroup iface_wl_subsurface
|
|
*
|
|
* Change the commit behaviour of the sub-surface to desynchronized
|
|
* mode, also described as independent or freely running mode.
|
|
*
|
|
* In desynchronized mode, wl_surface.commit on a sub-surface will
|
|
* apply the pending state directly, without caching, as happens
|
|
* normally with a wl_surface. Calling wl_surface.commit on the
|
|
* parent surface has no effect on the sub-surface's wl_surface
|
|
* state. This mode allows a sub-surface to be updated on its own.
|
|
*
|
|
* If cached state exists when wl_surface.commit is called in
|
|
* desynchronized mode, the pending state is added to the cached
|
|
* state, and applied as a whole. This invalidates the cache.
|
|
*
|
|
* Note: even if a sub-surface is set to desynchronized, a parent
|
|
* sub-surface may override it to behave as synchronized. For details,
|
|
* see wl_subsurface.
|
|
*
|
|
* If a surface's parent surface behaves as desynchronized, then
|
|
* the cached state is applied on set_desync.
|
|
*/
|
|
static inline void
|
|
wl_subsurface_set_desync(struct wl_subsurface *wl_subsurface)
|
|
{
|
|
wl_proxy_marshal((struct wl_proxy *) wl_subsurface,
|
|
WL_SUBSURFACE_SET_DESYNC);
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|