awtk/3rd/agg-2.5/examples/gouraud_mesh.cpp
2018-04-05 18:00:06 +08:00

499 lines
14 KiB
C++

#include <math.h>
#include <stdio.h>
#include <time.h>
#include "agg_rendering_buffer.h"
#include "agg_conv_transform.h"
#include "agg_conv_stroke.h"
#include "agg_conv_clip_polyline.h"
#include "agg_scanline_u.h"
#include "agg_scanline_bin.h"
#include "agg_renderer_scanline.h"
#include "agg_rasterizer_outline_aa.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_span_allocator.h"
#include "agg_span_gouraud_rgba.h"
#include "agg_gamma_lut.h"
#include "agg_arc.h"
#include "agg_bezier_arc.h"
#include "agg_pixfmt_rgb.h"
#include "agg_pixfmt_rgba.h"
#include "agg_bounding_rect.h"
#include "agg_vpgen_clip_polygon.h"
#include "ctrl/agg_slider_ctrl.h"
#include "ctrl/agg_bezier_ctrl.h"
#include "ctrl/agg_rbox_ctrl.h"
#include "ctrl/agg_cbox_ctrl.h"
#include "platform/agg_platform_support.h"
#include "agg_rasterizer_compound_aa.h"
enum { flip_y = true };
typedef agg::pixfmt_bgra32_pre pixfmt;
namespace agg
{
struct mesh_point
{
float_t x,y;
float_t dx,dy;
rgba8 color;
rgba8 dc;
mesh_point() {}
mesh_point(float_t x_, float_t y_,
float_t dx_, float_t dy_,
rgba8 c, rgba8 dc_) :
x(x_), y(y_),
dx(dx_), dy(dy_),
color(c), dc(dc_)
{}
};
struct mesh_triangle
{
unsigned p1, p2, p3;
mesh_triangle() {}
mesh_triangle(unsigned i, unsigned j, unsigned k) :
p1(i), p2(j), p3(k)
{}
};
struct mesh_edge
{
unsigned p1, p2;
int tl, tr;
mesh_edge() {}
mesh_edge(unsigned p1_, unsigned p2_, int tl_, int tr_) :
p1(p1_), p2(p2_), tl(tl_), tr(tr_)
{}
};
static float_t random(float_t v1, float_t v2)
{
return (v2 - v1) * (rand() % 1000) / 999.0 + v1;
}
class mesh_ctrl
{
public:
mesh_ctrl();
void generate(unsigned cols, unsigned rows,
float_t cell_w, float_t cell_h,
float_t start_x, float_t start_y);
void randomize_points(float_t delta);
void rotate_colors();
bool on_mouse_button_down(float_t x, float_t y, unsigned flags);
bool on_mouse_move(float_t x, float_t y, unsigned flags);
bool on_mouse_button_up(float_t x, float_t y, unsigned flags);
unsigned num_vertices() const { return m_vertices.size(); }
const mesh_point& vertex(unsigned i) const { return m_vertices[i]; }
mesh_point& vertex(unsigned i) { return m_vertices[i]; }
const mesh_point& vertex(unsigned x, unsigned y) const { return m_vertices[y * m_rows + x]; }
mesh_point& vertex(unsigned x, unsigned y) { return m_vertices[y * m_rows + x]; }
unsigned num_triangles() const { return m_triangles.size(); }
const mesh_triangle& triangle(unsigned i) const { return m_triangles[i]; }
mesh_triangle& triangle(unsigned i) { return m_triangles[i]; }
unsigned num_edges() const { return m_edges.size(); }
const mesh_edge& edge(unsigned i) const { return m_edges[i]; }
mesh_edge& edge(unsigned i) { return m_edges[i]; }
private:
unsigned m_cols;
unsigned m_rows;
int m_drag_idx;
float_t m_drag_dx;
float_t m_drag_dy;
float_t m_cell_w;
float_t m_cell_h;
float_t m_start_x;
float_t m_start_y;
pod_bvector<mesh_point> m_vertices;
pod_bvector<mesh_triangle> m_triangles;
pod_bvector<mesh_edge> m_edges;
};
mesh_ctrl::mesh_ctrl() :
m_cols(0),
m_rows(0),
m_drag_idx(-1),
m_drag_dx(0),
m_drag_dy(0)
{}
void mesh_ctrl::generate(unsigned cols, unsigned rows,
float_t cell_w, float_t cell_h,
float_t start_x, float_t start_y)
{
m_cols = cols;
m_rows = rows;
m_cell_w = cell_w;
m_cell_h = cell_h;
m_start_x = start_x;
m_start_y = start_y;
m_vertices.remove_all();
unsigned i, j;
for(i = 0; i < m_rows; i++)
{
float_t x = start_x;
for(j = 0; j < m_cols; j++)
{
float_t dx = random(-0.5, 0.5);
float_t dy = random(-0.5, 0.5);
rgba8 c(rand() & 0xFF, rand() & 0xFF, rand() & 0xFF);
rgba8 dc(rand() & 1, rand() & 1, rand() & 1);
m_vertices.add(mesh_point(x, start_y, dx, dy, c, dc));
x += cell_w;
}
start_y += cell_h;
}
// 4---3
// |t2/|
// | / |
// |/t1|
// 1---2
m_triangles.remove_all();
m_edges.remove_all();
for(i = 0; i < m_rows - 1; i++)
{
for(j = 0; j < m_cols - 1; j++)
{
int p1 = i * m_cols + j;
int p2 = p1 + 1;
int p3 = p2 + m_cols;
int p4 = p1 + m_cols;
m_triangles.add(mesh_triangle(p1, p2, p3));
m_triangles.add(mesh_triangle(p3, p4, p1));
int curr_cell = i * (m_cols - 1) + j;
int left_cell = j ? int(curr_cell - 1) : -1;
int bott_cell = i ? int(curr_cell - (m_cols - 1)) : -1;
int curr_t1 = curr_cell * 2;
int curr_t2 = curr_t1 + 1;
int left_t1 = (left_cell >= 0) ? left_cell * 2 : -1;
int left_t2 = (left_cell >= 0) ? left_t1 + 1 : -1;
int bott_t1 = (bott_cell >= 0) ? bott_cell * 2 : -1;
int bott_t2 = (bott_cell >= 0) ? bott_t1 + 1 : -1;
m_edges.add(mesh_edge(p1, p2, curr_t1, bott_t2));
m_edges.add(mesh_edge(p1, p3, curr_t2, curr_t1));
m_edges.add(mesh_edge(p1, p4, left_t1, curr_t2));
if(j == m_cols - 2) // Last column
{
m_edges.add(mesh_edge(p2, p3, curr_t1, -1));
}
if(i == m_rows - 2) // Last row
{
m_edges.add(mesh_edge(p3, p4, curr_t2, -1));
}
}
}
}
void mesh_ctrl::randomize_points(float_t delta)
{
unsigned i, j;
for(i = 0; i < m_rows; i++)
{
for(j = 0; j < m_cols; j++)
{
float_t xc = j * m_cell_w + m_start_x;
float_t yc = i * m_cell_h + m_start_y;
float_t x1 = xc - m_cell_w / 4;
float_t y1 = yc - m_cell_h / 4;
float_t x2 = xc + m_cell_w / 4;
float_t y2 = yc + m_cell_h / 4;
mesh_point& p = vertex(j, i);
p.x += p.dx;
p.y += p.dy;
if(p.x < x1) { p.x = x1; p.dx = -p.dx; }
if(p.y < y1) { p.y = y1; p.dy = -p.dy; }
if(p.x > x2) { p.x = x2; p.dx = -p.dx; }
if(p.y > y2) { p.y = y2; p.dy = -p.dy; }
}
}
}
void mesh_ctrl::rotate_colors()
{
unsigned i;
for(i = 1; i < m_vertices.size(); i++)
{
rgba8& c = m_vertices[i].color;
rgba8& dc = m_vertices[i].dc;
int r = c.r + (dc.r ? 5 : -5);
int g = c.g + (dc.g ? 5 : -5);
int b = c.b + (dc.b ? 5 : -5);
if(r < 0) { r = 0; dc.r ^= 1; } if(r > 255) { r = 255; dc.r ^= 1; }
if(g < 0) { g = 0; dc.g ^= 1; } if(g > 255) { g = 255; dc.g ^= 1; }
if(b < 0) { b = 0; dc.b ^= 1; } if(b > 255) { b = 255; dc.b ^= 1; }
c.r = r;
c.g = g;
c.b = b;
}
}
bool mesh_ctrl::on_mouse_button_down(float_t x, float_t y, unsigned flags)
{
if(flags & 1)
{
unsigned i;
for(i = 0; i < m_vertices.size(); i++)
{
if(calc_distance(x, y, m_vertices[i].x, m_vertices[i].y) < 5)
{
m_drag_idx = i;
m_drag_dx = x - m_vertices[i].x;
m_drag_dy = y - m_vertices[i].y;
return true;
}
}
}
return false;
}
bool mesh_ctrl::on_mouse_move(float_t x, float_t y, unsigned flags)
{
if(flags & 1)
{
if(m_drag_idx >= 0)
{
m_vertices[m_drag_idx].x = x - m_drag_dx;
m_vertices[m_drag_idx].y = y - m_drag_dy;
return true;
}
}
else
{
return on_mouse_button_up(x, y, flags);
}
return false;
}
bool mesh_ctrl::on_mouse_button_up(float_t x, float_t y, unsigned flags)
{
bool ret = m_drag_idx >= 0;
m_drag_idx = -1;
return ret;
}
class styles_gouraud
{
public:
typedef span_gouraud_rgba<rgba8> gouraud_type;
template<class Gamma>
styles_gouraud(const mesh_ctrl& mesh, const Gamma& gamma)
{
unsigned i;
for(i = 0; i < mesh.num_triangles(); i++)
{
const agg::mesh_triangle& t = mesh.triangle(i);
const agg::mesh_point& p1 = mesh.vertex(t.p1);
const agg::mesh_point& p2 = mesh.vertex(t.p2);
const agg::mesh_point& p3 = mesh.vertex(t.p3);
agg::rgba8 c1 = p1.color;
agg::rgba8 c2 = p2.color;
agg::rgba8 c3 = p3.color;
c1.apply_gamma_dir(gamma);
c2.apply_gamma_dir(gamma);
c3.apply_gamma_dir(gamma);
gouraud_type gouraud(c1, c2, c3,
p1.x, p1.y,
p2.x, p2.y,
p3.x, p3.y);
gouraud.prepare();
m_triangles.add(gouraud);
}
}
bool is_solid(unsigned style) const { return false; }
rgba8 color(unsigned style) const { return rgba8(0,0,0,0); }
void generate_span(rgba8* span, int x, int y, unsigned len, unsigned style)
{
m_triangles[style].generate(span, x, y, len);
}
private:
pod_bvector<gouraud_type> m_triangles;
};
}
class the_application : public agg::platform_support
{
public:
typedef agg::renderer_base<pixfmt> renderer_base;
typedef agg::renderer_scanline_aa_solid<renderer_base> renderer_scanline;
typedef agg::rasterizer_scanline_aa<> rasterizer_scanline;
typedef agg::scanline_u8 scanline;
agg::mesh_ctrl m_mesh;
agg::gamma_lut<> m_gamma;
the_application(agg::pix_format_e format, bool flip_y) :
agg::platform_support(format, flip_y)
{
// m_gamma.gamma(2.0);
}
virtual void on_init()
{
m_mesh.generate(20, 20, 17, 17, 40, 40);
}
virtual void on_draw()
{
pixfmt pf(rbuf_window());
renderer_base ren_base(pf);
ren_base.clear(agg::rgba(0, 0, 0));
renderer_scanline ren(ren_base);
rasterizer_scanline ras;
agg::scanline_u8 sl;
agg::scanline_bin sl_bin;
agg::rasterizer_compound_aa<> rasc;
agg::span_allocator<agg::rgba8> alloc;
unsigned i;
agg::styles_gouraud styles(m_mesh, m_gamma);
start_timer();
rasc.reset();
//rasc.clip_box(40, 40, width() - 40, height() - 40);
for(i = 0; i < m_mesh.num_edges(); i++)
{
const agg::mesh_edge& e = m_mesh.edge(i);
const agg::mesh_point& p1 = m_mesh.vertex(e.p1);
const agg::mesh_point& p2 = m_mesh.vertex(e.p2);
rasc.styles(e.tl, e.tr);
rasc.move_to_d(p1.x, p1.y);
rasc.line_to_d(p2.x, p2.y);
}
agg::render_scanlines_compound(rasc, sl, sl_bin, ren_base, alloc, styles);
float_t tm = elapsed_time();
char buf[256];
agg::gsv_text t;
t.size(10.0);
agg::conv_stroke<agg::gsv_text> pt(t);
pt.width(1.5);
pt.line_cap(agg::round_cap);
pt.line_join(agg::round_join);
sprintf(buf, "%3.2f ms, %d triangles, %.0f tri/sec",
tm,
m_mesh.num_triangles(),
m_mesh.num_triangles() / tm * 1000.0);
t.start_point(10.0, 10.0);
t.text(buf);
ras.add_path(pt);
agg::render_scanlines_aa_solid(ras, sl, ren_base, agg::rgba(1,1,1));
if(m_gamma.gamma() != 1.0)
{
pf.apply_gamma_inv(m_gamma);
}
}
virtual void on_mouse_move(int x, int y, unsigned flags)
{
if(m_mesh.on_mouse_move(x, y, flags))
{
force_redraw();
}
}
virtual void on_mouse_button_down(int x, int y, unsigned flags)
{
if(m_mesh.on_mouse_button_down(x, y, flags))
{
force_redraw();
}
}
virtual void on_mouse_button_up(int x, int y, unsigned flags)
{
if(m_mesh.on_mouse_button_up(x, y, flags))
{
force_redraw();
}
}
virtual void on_key(int x, int y, unsigned key, unsigned flags)
{
}
void on_idle()
{
m_mesh.randomize_points(1.0);
m_mesh.rotate_colors();
force_redraw();
}
virtual void on_ctrl_change()
{
}
};
int agg_main(int argc, char* argv[])
{
the_application app(agg::pix_format_bgra32, flip_y);
app.caption("AGG Example");
if(app.init(400, 400, 0))//agg::window_resize))
{
app.wait_mode(false);
return app.run();
}
return 1;
}