cetus/tools/lempar.c
2018-03-06 14:00:39 +08:00

930 lines
31 KiB
C

/*
** 2000-05-29
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Driver template for the LEMON parser generator.
**
** The "lemon" program processes an LALR(1) input grammar file, then uses
** this template to construct a parser. The "lemon" program inserts text
** at each "%%" line. Also, any "P-a-r-s-e" identifer prefix (without the
** interstitial "-" characters) contained in this template is changed into
** the value of the %name directive from the grammar. Otherwise, the content
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
#include <stdio.h>
/************ Begin %include sections from the grammar ************************/
%%
/**************** End of %include directives **********************************/
/* These constants specify the various numeric values for terminal symbols
** in a format understandable to "makeheaders". This section is blank unless
** "lemon" is run with the "-m" command-line option.
***************** Begin makeheaders token definitions *************************/
%%
/**************** End makeheaders token definitions ***************************/
/* The next sections is a series of control #defines.
** various aspects of the generated parser.
** YYCODETYPE is the data type used to store the integer codes
** that represent terminal and non-terminal symbols.
** "unsigned char" is used if there are fewer than
** 256 symbols. Larger types otherwise.
** YYNOCODE is a number of type YYCODETYPE that is not used for
** any terminal or nonterminal symbol.
** YYFALLBACK If defined, this indicates that one or more tokens
** (also known as: "terminal symbols") have fall-back
** values which should be used if the original symbol
** would not parse. This permits keywords to sometimes
** be used as identifiers, for example.
** YYACTIONTYPE is the data type used for "action codes" - numbers
** that indicate what to do in response to the next
** token.
** ParseTOKENTYPE is the data type used for minor type for terminal
** symbols. Background: A "minor type" is a semantic
** value associated with a terminal or non-terminal
** symbols. For example, for an "ID" terminal symbol,
** the minor type might be the name of the identifier.
** Each non-terminal can have a different minor type.
** Terminal symbols all have the same minor type, though.
** This macros defines the minor type for terminal
** symbols.
** YYMINORTYPE is the data type used for all minor types.
** This is typically a union of many types, one of
** which is ParseTOKENTYPE. The entry in the union
** for terminal symbols is called "yy0".
** YYSTACKDEPTH is the maximum depth of the parser's stack. If
** zero the stack is dynamically sized using realloc()
** ParseARG_SDECL A static variable declaration for the %extra_argument
** ParseARG_PDECL A parameter declaration for the %extra_argument
** ParseARG_STORE Code to store %extra_argument into yypParser
** ParseARG_FETCH Code to extract %extra_argument from yypParser
** YYERRORSYMBOL is the code number of the error symbol. If not
** defined, then do no error processing.
** YYNSTATE the combined number of states.
** YYNRULE the number of rules in the grammar
** YY_MAX_SHIFT Maximum value for shift actions
** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
** YY_MIN_REDUCE Maximum value for reduce actions
** YY_ERROR_ACTION The yy_action[] code for syntax error
** YY_ACCEPT_ACTION The yy_action[] code for accept
** YY_NO_ACTION The yy_action[] code for no-op
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
%%
/************* End control #defines *******************************************/
/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define yytestcase() in the %include section
** to a macro that can assist in verifying code coverage. For production
** code the yytestcase() macro should be turned off. But it is useful
** for testing.
*/
#ifndef yytestcase
# define yytestcase(X)
#endif
/* Next are the tables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
** Suppose the action integer is N. Then the action is determined as
** follows
**
** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead
** token onto the stack and goto state N.
**
** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE.
**
** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE
** and YY_MAX_REDUCE
** N == YY_ERROR_ACTION A syntax error has occurred.
**
** N == YY_ACCEPT_ACTION The parser accepts its input.
**
** N == YY_NO_ACTION No such action. Denotes unused
** slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as
**
** yy_action[ yy_shift_ofst[S] + X ]
**
** If the index value yy_shift_ofst[S]+X is out of range or if the value
** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
** and that yy_default[S] should be used instead.
**
** The formula above is for computing the action when the lookahead is
** a terminal symbol. If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
** YY_SHIFT_USE_DFLT.
**
** The following are the tables generated in this section:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
**
*********** Begin parsing tables **********************************************/
%%
/********** End of lemon-generated parsing tables *****************************/
/* The next table maps tokens (terminal symbols) into fallback tokens.
** If a construct like the following:
**
** %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
**
** This feature can be used, for example, to cause some keywords in a language
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
#ifdef YYFALLBACK
static const YYCODETYPE yyFallback[] = {
%%
};
#endif /* YYFALLBACK */
/* The following structure represents a single element of the
** parser's stack. Information stored includes:
**
** + The state number for the parser at this level of the stack.
**
** + The value of the token stored at this level of the stack.
** (In other words, the "major" token.)
**
** + The semantic value stored at this level of the stack. This is
** the information used by the action routines in the grammar.
** It is sometimes called the "minor" token.
**
** After the "shift" half of a SHIFTREDUCE action, the stateno field
** actually contains the reduce action for the second half of the
** SHIFTREDUCE.
*/
struct yyStackEntry {
YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
YYCODETYPE major; /* The major token value. This is the code
** number for the token at this stack level */
YYMINORTYPE minor; /* The user-supplied minor token value. This
** is the value of the token */
};
typedef struct yyStackEntry yyStackEntry;
/* The state of the parser is completely contained in an instance of
** the following structure */
struct yyParser {
int yyidx; /* Index of top element in stack */
#ifdef YYTRACKMAXSTACKDEPTH
int yyidxMax; /* Maximum value of yyidx */
#endif
#ifndef YYNOERRORRECOVERY
int yyerrcnt; /* Shifts left before out of the error */
#endif
ParseARG_SDECL /* A place to hold %extra_argument */
#if YYSTACKDEPTH<=0
int yystksz; /* Current side of the stack */
yyStackEntry *yystack; /* The parser's stack */
#else
yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
#endif
};
typedef struct yyParser yyParser;
#ifndef NDEBUG
#include <stdio.h>
static FILE *yyTraceFILE = 0;
static char *yyTracePrompt = 0;
#endif /* NDEBUG */
#ifndef NDEBUG
/*
** Turn parser tracing on by giving a stream to which to write the trace
** and a prompt to preface each trace message. Tracing is turned off
** by making either argument NULL
**
** Inputs:
** <ul>
** <li> A FILE *to which trace output should be written.
** If NULL, then tracing is turned off.
** <li> A prefix string written at the beginning of every
** line of trace output. If NULL, then tracing is
** turned off.
** </ul>
**
** Outputs:
** None.
*/
void ParseTrace(FILE *TraceFILE, char *zTracePrompt) {
yyTraceFILE = TraceFILE;
yyTracePrompt = zTracePrompt;
if (yyTraceFILE == 0) yyTracePrompt = 0;
else if (yyTracePrompt == 0) yyTraceFILE = 0;
}
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required. The following table supplies these names */
static const char *const yyTokenName[] = {
%%
};
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const yyRuleName[] = {
%%
};
#endif /* NDEBUG */
#if YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack.
*/
static void yyGrowStack(yyParser *p) {
int newSize;
yyStackEntry *pNew;
newSize = p->yystksz *2 + 100;
pNew = realloc(p->yystack, newSize *sizeof(pNew[0]));
if (pNew) {
p->yystack = pNew;
p->yystksz = newSize;
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
yyTracePrompt, p->yystksz);
}
#endif
}
}
#endif
/* Datatype of the argument to the memory allocated passed as the
** second argument to ParseAlloc() below. This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif
/*
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser. This pointer is used in subsequent calls
** to Parse and ParseFree.
*/
void *ParseAlloc(void *(*mallocProc)(YYMALLOCARGTYPE)) {
yyParser *pParser;
pParser = (yyParser *)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
if (pParser) {
pParser->yyidx = -1;
#ifdef YYTRACKMAXSTACKDEPTH
pParser->yyidxMax = 0;
#endif
#if YYSTACKDEPTH<=0
pParser->yystack = NULL;
pParser->yystksz = 0;
yyGrowStack(pParser);
#endif
}
return pParser;
}
/* The following function deletes the "minor type" or semantic value
** associated with a symbol. The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted. The code used to do the
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
*/
static void yy_destructor(
yyParser *yypParser, /* The parser */
YYCODETYPE yymajor, /* Type code for object to destroy */
YYMINORTYPE *yypminor /* The object to be destroyed */
) {
ParseARG_FETCH;
switch(yymajor) {
/* Here is inserted the actions which take place when a
** terminal or non-terminal is destroyed. This can happen
** when the symbol is popped from the stack during a
** reduce or during error processing or when a parser is
** being destroyed before it is finished parsing.
**
** Note: during a reduce, the only symbols destroyed are those
** which appear on the RHS of the rule, but which are *not *used
** inside the C code.
*/
/********* Begin destructor definitions ***************************************/
%%
/********* End destructor definitions *****************************************/
default: break; /* If no destructor action specified: do nothing */
}
}
/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.
*/
static void yy_pop_parser_stack(yyParser *pParser) {
yyStackEntry *yytos;
assert( pParser->yyidx>=0);
yytos = &pParser->yystack[pParser->yyidx--];
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sPopping %s\n",
yyTracePrompt,
yyTokenName[yytos->major]);
}
#endif
yy_destructor(pParser, yytos->major, &yytos->minor);
}
/*
** Deallocate and destroy a parser. Destructors are called for
** all stack elements before shutting the parser down.
**
** If the YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.
*/
void ParseFree(
void *p, /* The parser to be deleted */
void (*freeProc)(void *) /* Function used to reclaim memory */
) {
yyParser *pParser = (yyParser *)p;
#ifndef YYPARSEFREENEVERNULL
if (pParser == 0) return;
#endif
while(pParser->yyidx>=0) yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
free(pParser->yystack);
#endif
(*freeProc)((void *)pParser);
}
/*
** Return the peak depth of the stack for a parser.
*/
#ifdef YYTRACKMAXSTACKDEPTH
int ParseStackPeak(void *p) {
yyParser *pParser = (yyParser *)p;
return pParser->yyidxMax;
}
#endif
/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
static unsigned int yy_find_shift_action(
yyParser *pParser, /* The parser */
YYCODETYPE iLookAhead /* The look-ahead token */
) {
int i;
int stateno = pParser->yystack[pParser->yyidx].stateno;
if (stateno>=YY_MIN_REDUCE) return stateno;
assert( stateno <= YY_SHIFT_COUNT);
do{
i = yy_shift_ofst[stateno];
if (i == YY_SHIFT_USE_DFLT) return yy_default[stateno];
assert( iLookAhead!=YYNOCODE);
i += iLookAhead;
if (i < 0 || i >= YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead) {
if (iLookAhead>0) {
#ifdef YYFALLBACK
YYCODETYPE iFallback; /* Fallback token */
if (iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
&& (iFallback = yyFallback[iLookAhead])!=0) {
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
}
#endif
assert( yyFallback[iFallback] == 0); /* Fallback loop must terminate */
iLookAhead = iFallback;
continue;
}
#endif
#ifdef YYWILDCARD
{
int j = i - iLookAhead + YYWILDCARD;
if (
#if YY_SHIFT_MIN+YYWILDCARD<0
j>=0 &&
#endif
#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
j<YY_ACTTAB_COUNT &&
#endif
yy_lookahead[j] == YYWILDCARD
) {
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead],
yyTokenName[YYWILDCARD]);
}
#endif /* NDEBUG */
return yy_action[j];
}
}
#endif /* YYWILDCARD */
}
return yy_default[stateno];
} else{
return yy_action[i];
}
}while(1);
}
/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
*/
static int yy_find_reduce_action(
int stateno, /* Current state number */
YYCODETYPE iLookAhead /* The look-ahead token */
) {
int i;
#ifdef YYERRORSYMBOL
if (stateno>YY_REDUCE_COUNT) {
return yy_default[stateno];
}
#else
assert( stateno<=YY_REDUCE_COUNT);
#endif
i = yy_reduce_ofst[stateno];
assert( i!=YY_REDUCE_USE_DFLT);
assert( iLookAhead!=YYNOCODE);
i += iLookAhead;
#ifdef YYERRORSYMBOL
if (i < 0 || i >= YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead) {
return yy_default[stateno];
}
#else
assert( i >= 0 && i < YY_ACTTAB_COUNT);
assert( yy_lookahead[i] == iLookAhead);
#endif
return yy_action[i];
}
/*
** The following routine is called if the stack overflows.
*/
static void yyStackOverflow(yyParser *yypParser) {
ParseARG_FETCH;
yypParser->yyidx--;
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
}
#endif
while(yypParser->yyidx>=0) yy_pop_parser_stack(yypParser);
/* Here code is inserted which will execute if the parser
** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
%%
/******** End %stack_overflow code ********************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}
/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState) {
if (yyTraceFILE) {
if (yyNewState<YYNSTATE) {
fprintf(yyTraceFILE,"%sShift '%s', go to state %d\n",
yyTracePrompt,yyTokenName[yypParser->yystack[yypParser->yyidx].major],
yyNewState);
} else{
fprintf(yyTraceFILE,"%sShift '%s'\n",
yyTracePrompt,yyTokenName[yypParser->yystack[yypParser->yyidx].major]);
}
}
}
#else
# define yyTraceShift(X,Y)
#endif
/*
** Perform a shift action.
*/
static void yy_shift(
yyParser *yypParser, /* The parser to be shifted */
int yyNewState, /* The new state to shift in */
int yyMajor, /* The major token to shift in */
ParseTOKENTYPE yyMinor /* The minor token to shift in */
) {
yyStackEntry *yytos;
yypParser->yyidx++;
#ifdef YYTRACKMAXSTACKDEPTH
if (yypParser->yyidx>yypParser->yyidxMax) {
yypParser->yyidxMax = yypParser->yyidx;
}
#endif
#if YYSTACKDEPTH>0
if (yypParser->yyidx>=YYSTACKDEPTH) {
yyStackOverflow(yypParser);
return;
}
#else
if (yypParser->yyidx>=yypParser->yystksz) {
yyGrowStack(yypParser);
if (yypParser->yyidx>=yypParser->yystksz) {
yyStackOverflow(yypParser);
return;
}
}
#endif
yytos = &yypParser->yystack[yypParser->yyidx];
yytos->stateno = (YYACTIONTYPE)yyNewState;
yytos->major = (YYCODETYPE)yyMajor;
yytos->minor.yy0 = yyMinor;
yyTraceShift(yypParser, yyNewState);
}
/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
unsigned char nrhs; /* Number of right-hand side symbols in the rule */
} yyRuleInfo[] = {
%%
};
static void yy_accept(yyParser *); /* Forward Declaration */
/*
** Perform a reduce action and the shift that must immediately
** follow the reduce.
*/
static void yy_reduce(
yyParser *yypParser, /* The parser */
unsigned int yyruleno /* Number of the rule by which to reduce */
) {
int yygoto; /* The next state */
int yyact; /* The next action */
yyStackEntry *yymsp; /* The top of the parser's stack */
int yysize; /* Amount to pop the stack */
ParseARG_FETCH;
yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
if (yyTraceFILE && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ) {
yysize = yyRuleInfo[yyruleno].nrhs;
fprintf(yyTraceFILE, "%sReduce [%s], go to state %d.\n", yyTracePrompt,
yyRuleName[yyruleno], yymsp[-yysize].stateno);
}
#endif /* NDEBUG */
/* Check that the stack is large enough to grow by a single entry
** if the RHS of the rule is empty. This ensures that there is room
** enough on the stack to push the LHS value */
if (yyRuleInfo[yyruleno].nrhs == 0) {
#ifdef YYTRACKMAXSTACKDEPTH
if (yypParser->yyidx>yypParser->yyidxMax) {
yypParser->yyidxMax = yypParser->yyidx;
}
#endif
#if YYSTACKDEPTH>0
if (yypParser->yyidx>=YYSTACKDEPTH-1) {
yyStackOverflow(yypParser);
return;
}
#else
if (yypParser->yyidx>=yypParser->yystksz-1) {
yyGrowStack(yypParser);
if (yypParser->yyidx>=yypParser->yystksz-1) {
yyStackOverflow(yypParser);
return;
}
}
#endif
}
switch(yyruleno) {
/* Beginning here are the reduction cases. A typical example
** follows:
** case 0:
** #line <lineno> <grammarfile>
** { ... } // User supplied code
** #line <lineno> <thisfile>
** break;
*/
/********** Begin reduce actions **********************************************/
%%
/********** End reduce actions ************************************************/
};
assert( yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
yygoto = yyRuleInfo[yyruleno].lhs;
yysize = yyRuleInfo[yyruleno].nrhs;
yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
if (yyact <= YY_MAX_SHIFTREDUCE) {
if (yyact>YY_MAX_SHIFT) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
yypParser->yyidx -= yysize - 1;
yymsp -= yysize-1;
yymsp->stateno = (YYACTIONTYPE)yyact;
yymsp->major = (YYCODETYPE)yygoto;
yyTraceShift(yypParser, yyact);
} else{
assert( yyact == YY_ACCEPT_ACTION);
yypParser->yyidx -= yysize;
yy_accept(yypParser);
}
}
/*
** The following code executes when the parse fails
*/
#ifndef YYNOERRORRECOVERY
static void yy_parse_failed(
yyParser *yypParser /* The parser */
) {
ParseARG_FETCH;
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
}
#endif
while(yypParser->yyidx>=0) yy_pop_parser_stack(yypParser);
/* Here code is inserted which will be executed whenever the
** parser fails */
/************ Begin %parse_failure code ***************************************/
%%
/************ End %parse_failure code *****************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
#endif /* YYNOERRORRECOVERY */
/*
** The following code executes when a syntax error first occurs.
*/
static void yy_syntax_error(
yyParser *yypParser, /* The parser */
int yymajor, /* The major type of the error token */
ParseTOKENTYPE yyminor /* The minor type of the error token */
) {
ParseARG_FETCH;
#define TOKEN yyminor
/************ Begin %syntax_error code ****************************************/
%%
/************ End %syntax_error code ******************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
/*
** The following is executed when the parser accepts
*/
static void yy_accept(
yyParser *yypParser /* The parser */
) {
ParseARG_FETCH;
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
}
#endif
while(yypParser->yyidx>=0) yy_pop_parser_stack(yypParser);
/* Here code is inserted which will be executed whenever the
** parser accepts */
/*********** Begin %parse_accept code *****************************************/
%%
/*********** End %parse_accept code *******************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "ParseAlloc" which describes the current state of the parser.
** The second argument is the major token number. The third is
** the minor token. The fourth optional argument is whatever the
** user wants (and specified in the grammar) and is available for
** use by the action routines.
**
** Inputs:
** <ul>
** <li> A pointer to the parser (an opaque structure.)
** <li> The major token number.
** <li> The minor token number.
** <li> An option argument of a grammar-specified type.
** </ul>
**
** Outputs:
** None.
*/
void Parse(
void *yyp, /* The parser */
int yymajor, /* The major token code number */
ParseTOKENTYPE yyminor /* The value for the token */
ParseARG_PDECL /* Optional %extra_argument parameter */
) {
YYMINORTYPE yyminorunion;
unsigned int yyact; /* The parser action. */
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
int yyendofinput; /* True if we are at the end of input */
#endif
#ifdef YYERRORSYMBOL
int yyerrorhit = 0; /* True if yymajor has invoked an error */
#endif
yyParser *yypParser; /* The parser */
/* (re)initialize the parser, if necessary */
yypParser = (yyParser *)yyp;
if (yypParser->yyidx<0) {
#if YYSTACKDEPTH<=0
if (yypParser->yystksz <=0) {
yyStackOverflow(yypParser);
return;
}
#endif
yypParser->yyidx = 0;
#ifndef YYNOERRORRECOVERY
yypParser->yyerrcnt = -1;
#endif
yypParser->yystack[0].stateno = 0;
yypParser->yystack[0].major = 0;
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sInitialize. Empty stack. State 0\n",
yyTracePrompt);
}
#endif
}
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
yyendofinput = (yymajor == 0);
#endif
ParseARG_STORE;
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sInput '%s'\n",yyTracePrompt,yyTokenName[yymajor]);
}
#endif
do{
yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
if (yyact <= YY_MAX_SHIFTREDUCE) {
if (yyact > YY_MAX_SHIFT) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
yy_shift(yypParser,yyact,yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
yypParser->yyerrcnt--;
#endif
yymajor = YYNOCODE;
} else if (yyact <= YY_MAX_REDUCE) {
yy_reduce(yypParser,yyact-YY_MIN_REDUCE);
} else{
assert( yyact == YY_ERROR_ACTION);
yyminorunion.yy0 = yyminor;
#ifdef YYERRORSYMBOL
int yymx;
#endif
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
}
#endif
#ifdef YYERRORSYMBOL
/* A syntax error has occurred.
** The response to an error depends upon whether or not the
** grammar defines an error token "ERROR".
**
** This is what we do if the grammar does define ERROR:
**
** * Call the %syntax_error function.
**
** * Begin popping the stack until we enter a state where
** it is legal to shift the error symbol, then shift
** the error symbol.
**
** * Set the error count to three.
**
** * Begin accepting and shifting new tokens. No new error
** processing will occur until three tokens have been
** shifted successfully.
**
*/
if (yypParser->yyerrcnt<0) {
yy_syntax_error(yypParser,yymajor,yyminor);
}
yymx = yypParser->yystack[yypParser->yyidx].major;
if (yymx == YYERRORSYMBOL || yyerrorhit) {
#ifndef NDEBUG
if (yyTraceFILE) {
fprintf(yyTraceFILE,"%sDiscard input token %s\n",
yyTracePrompt,yyTokenName[yymajor]);
}
#endif
yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion);
yymajor = YYNOCODE;
} else{
while(
yypParser->yyidx >= 0 &&
yymx != YYERRORSYMBOL &&
(yyact = yy_find_reduce_action(
yypParser->yystack[yypParser->yyidx].stateno,
YYERRORSYMBOL)) >= YY_MIN_REDUCE
) {
yy_pop_parser_stack(yypParser);
}
if (yypParser->yyidx < 0 || yymajor == 0) {
yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
yy_parse_failed(yypParser);
yymajor = YYNOCODE;
} else if (yymx!=YYERRORSYMBOL) {
yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor);
}
}
yypParser->yyerrcnt = 3;
yyerrorhit = 1;
#elif defined(YYNOERRORRECOVERY)
/* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
** do any kind of error recovery. Instead, simply invoke the syntax
** error routine and continue going as if nothing had happened.
**
** Applications can set this macro (for example inside %include) if
** they intend to abandon the parse upon the first syntax error seen.
*/
yy_syntax_error(yypParser,yymajor, yyminor);
yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
yymajor = YYNOCODE;
#else /* YYERRORSYMBOL is not defined */
/* This is what we do if the grammar does not define ERROR:
**
** * Report an error message, and throw away the input token.
**
** * If the input token is $, then fail the parse.
**
** As before, subsequent error messages are suppressed until
** three input tokens have been successfully shifted.
*/
if (yypParser->yyerrcnt<=0) {
yy_syntax_error(yypParser,yymajor, yyminor);
}
yypParser->yyerrcnt = 3;
yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
if (yyendofinput) {
yy_parse_failed(yypParser);
}
yymajor = YYNOCODE;
#endif
}
}while(yymajor!=YYNOCODE && yypParser->yyidx>=0);
#ifndef NDEBUG
if (yyTraceFILE) {
int i;
fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
for(i = 1; i <= yypParser->yyidx; i++)
fprintf(yyTraceFILE,"%c%s", i == 1 ? '[' : ' ',
yyTokenName[yypParser->yystack[i].major]);
fprintf(yyTraceFILE,"]\n");
}
#endif
return;
}