dify/api/core/indexing_runner.py

578 lines
23 KiB
Python
Raw Normal View History

2023-05-15 08:51:32 +08:00
import datetime
import json
import logging
2023-05-15 08:51:32 +08:00
import re
import time
import uuid
from typing import Optional, List, cast
from flask import current_app
from flask_login import current_user
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
2023-05-15 08:51:32 +08:00
from core.data_loader.file_extractor import FileExtractor
from core.data_loader.loader.notion import NotionLoader
2023-05-15 08:51:32 +08:00
from core.docstore.dataset_docstore import DatesetDocumentStore
from core.embedding.cached_embedding import CacheEmbedding
from core.index.index import IndexBuilder
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
from core.index.vector_index.vector_index import VectorIndex
from core.llm.error import ProviderTokenNotInitError
from core.llm.llm_builder import LLMBuilder
from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
2023-05-15 08:51:32 +08:00
from core.llm.token_calculator import TokenCalculator
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from models.dataset import Document as DatasetDocument
from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
2023-05-15 08:51:32 +08:00
from models.model import UploadFile
from models.source import DataSourceBinding
2023-05-15 08:51:32 +08:00
class IndexingRunner:
def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
self.storage = storage
self.embedding_model_name = embedding_model_name
def run(self, dataset_documents: List[DatasetDocument]):
2023-05-15 08:51:32 +08:00
"""Run the indexing process."""
for dataset_document in dataset_documents:
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# load file
text_docs = self._load_data(dataset_document)
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
first()
# get splitter
splitter = self._get_splitter(processing_rule)
# split to documents
documents = self._step_split(
text_docs=text_docs,
splitter=splitter,
dataset=dataset,
dataset_document=dataset_document,
processing_rule=processing_rule
)
# build index
self._build_index(
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
def run_in_splitting_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is splitting."""
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=dataset_document.id
).all()
db.session.delete(document_segments)
db.session.commit()
# load file
text_docs = self._load_data(dataset_document)
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
first()
# get splitter
splitter = self._get_splitter(processing_rule)
# split to documents
documents = self._step_split(
text_docs=text_docs,
splitter=splitter,
dataset=dataset,
dataset_document=dataset_document,
processing_rule=processing_rule
)
2023-05-15 08:51:32 +08:00
# build index
self._build_index(
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
2023-05-15 08:51:32 +08:00
def run_in_indexing_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is indexing."""
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
2023-05-15 08:51:32 +08:00
if not dataset:
raise ValueError("no dataset found")
2023-05-15 08:51:32 +08:00
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=dataset_document.id
).all()
documents = []
if document_segments:
for document_segment in document_segments:
# transform segment to node
if document_segment.status != "completed":
document = Document(
page_content=document_segment.content,
metadata={
"doc_id": document_segment.index_node_id,
"doc_hash": document_segment.index_node_hash,
"document_id": document_segment.document_id,
"dataset_id": document_segment.dataset_id,
}
)
documents.append(document)
2023-05-15 08:51:32 +08:00
# build index
self._build_index(
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
2023-05-15 08:51:32 +08:00
def file_indexing_estimate(self, file_details: List[UploadFile], tmp_processing_rule: dict) -> dict:
2023-05-15 08:51:32 +08:00
"""
Estimate the indexing for the document.
"""
tokens = 0
preview_texts = []
total_segments = 0
for file_detail in file_details:
# load data from file
text_docs = FileExtractor.load(file_detail)
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"],
rules=json.dumps(tmp_processing_rule["rules"])
)
2023-05-15 08:51:32 +08:00
# get splitter
splitter = self._get_splitter(processing_rule)
2023-05-15 08:51:32 +08:00
# split to documents
documents = self._split_to_documents(
text_docs=text_docs,
splitter=splitter,
processing_rule=processing_rule
)
total_segments += len(documents)
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
2023-05-15 08:51:32 +08:00
2023-06-28 13:58:36 +08:00
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name,
self.filter_string(document.page_content))
2023-05-15 08:51:32 +08:00
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
"currency": TokenCalculator.get_currency(self.embedding_model_name),
"preview": preview_texts
}
def notion_indexing_estimate(self, notion_info_list: list, tmp_processing_rule: dict) -> dict:
"""
Estimate the indexing for the document.
"""
# load data from notion
2023-05-15 08:51:32 +08:00
tokens = 0
preview_texts = []
total_segments = 0
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
loader = NotionLoader(
notion_access_token=data_source_binding.access_token,
notion_workspace_id=workspace_id,
notion_obj_id=page['page_id'],
notion_page_type=page['type']
)
documents = loader.load()
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"],
rules=json.dumps(tmp_processing_rule["rules"])
)
# get splitter
splitter = self._get_splitter(processing_rule)
# split to documents
documents = self._split_to_documents(
text_docs=documents,
splitter=splitter,
processing_rule=processing_rule
)
total_segments += len(documents)
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
2023-05-15 08:51:32 +08:00
return {
"total_segments": total_segments,
2023-05-15 08:51:32 +08:00
"tokens": tokens,
"total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
"currency": TokenCalculator.get_currency(self.embedding_model_name),
"preview": preview_texts
}
def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
2023-05-15 08:51:32 +08:00
# load file
if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
2023-05-15 08:51:32 +08:00
return []
data_source_info = dataset_document.data_source_info_dict
text_docs = []
if dataset_document.data_source_type == 'upload_file':
if not data_source_info or 'upload_file_id' not in data_source_info:
raise ValueError("no upload file found")
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == data_source_info['upload_file_id']). \
one_or_none()
text_docs = FileExtractor.load(file_detail)
elif dataset_document.data_source_type == 'notion_import':
loader = NotionLoader.from_document(dataset_document)
text_docs = loader.load()
2023-05-15 08:51:32 +08:00
# update document status to splitting
self._update_document_index_status(
document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
after_indexing_status="splitting",
extra_update_params={
DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
2023-05-15 08:51:32 +08:00
}
)
# replace doc id to document model id
text_docs = cast(List[Document], text_docs)
2023-05-15 08:51:32 +08:00
for text_doc in text_docs:
# remove invalid symbol
text_doc.page_content = self.filter_string(text_doc.page_content)
text_doc.metadata['document_id'] = dataset_document.id
text_doc.metadata['dataset_id'] = dataset_document.dataset_id
2023-05-15 08:51:32 +08:00
return text_docs
def filter_string(self, text):
2023-06-28 14:58:40 +08:00
text = re.sub(r'<\|', '<', text)
text = re.sub(r'\|>', '>', text)
text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
return text
2023-05-15 08:51:32 +08:00
def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
2023-05-15 08:51:32 +08:00
"""
Get the NodeParser object according to the processing rule.
"""
if processing_rule.mode == "custom":
# The user-defined segmentation rule
rules = json.loads(processing_rule.rules)
segmentation = rules["segmentation"]
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
raise ValueError("Custom segment length should be between 50 and 1000.")
separator = segmentation["separator"]
if separator:
2023-05-15 08:51:32 +08:00
separator = separator.replace('\\n', '\n')
character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
2023-05-15 08:51:32 +08:00
chunk_size=segmentation["max_tokens"],
chunk_overlap=0,
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""]
2023-05-15 08:51:32 +08:00
)
else:
# Automatic segmentation
character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
chunk_overlap=0,
separators=["\n\n", "", ".", " ", ""]
)
return character_splitter
2023-05-15 08:51:32 +08:00
def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
-> List[Document]:
2023-05-15 08:51:32 +08:00
"""
Split the text documents into documents and save them to the document segment.
2023-05-15 08:51:32 +08:00
"""
documents = self._split_to_documents(
2023-05-15 08:51:32 +08:00
text_docs=text_docs,
splitter=splitter,
2023-05-15 08:51:32 +08:00
processing_rule=processing_rule
)
# save node to document segment
doc_store = DatesetDocumentStore(
dataset=dataset,
user_id=dataset_document.created_by,
2023-05-15 08:51:32 +08:00
embedding_model_name=self.embedding_model_name,
document_id=dataset_document.id
2023-05-15 08:51:32 +08:00
)
# add document segments
doc_store.add_documents(documents)
2023-05-15 08:51:32 +08:00
# update document status to indexing
cur_time = datetime.datetime.utcnow()
self._update_document_index_status(
document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
after_indexing_status="indexing",
extra_update_params={
DatasetDocument.cleaning_completed_at: cur_time,
DatasetDocument.splitting_completed_at: cur_time,
2023-05-15 08:51:32 +08:00
}
)
# update segment status to indexing
self._update_segments_by_document(
dataset_document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.utcnow()
}
)
return documents
2023-05-15 08:51:32 +08:00
def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
2023-06-28 13:58:36 +08:00
processing_rule: DatasetProcessRule) -> List[Document]:
2023-05-15 08:51:32 +08:00
"""
Split the text documents into nodes.
"""
all_documents = []
2023-05-15 08:51:32 +08:00
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
2023-05-15 08:51:32 +08:00
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document in documents:
if document.page_content is None or not document.page_content.strip():
continue
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document.page_content)
document.metadata['doc_id'] = doc_id
document.metadata['doc_hash'] = hash
split_documents.append(document)
all_documents.extend(split_documents)
2023-05-15 08:51:32 +08:00
return all_documents
2023-05-15 08:51:32 +08:00
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
"""
Clean the document text according to the processing rules.
"""
if processing_rule.mode == "automatic":
rules = DatasetProcessRule.AUTOMATIC_RULES
else:
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
if 'pre_processing_rules' in rules:
pre_processing_rules = rules["pre_processing_rules"]
for pre_processing_rule in pre_processing_rules:
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
# Remove extra spaces
pattern = r'\n{3,}'
text = re.sub(pattern, '\n\n', text)
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
text = re.sub(pattern, ' ', text)
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
# Remove email
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
text = re.sub(pattern, '', text)
# Remove URL
pattern = r'https?://[^\s]+'
text = re.sub(pattern, '', text)
return text
def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
2023-05-15 08:51:32 +08:00
"""
Build the index for the document.
"""
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
2023-05-15 08:51:32 +08:00
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 100
for i in range(0, len(documents), chunk_size):
2023-05-15 08:51:32 +08:00
# check document is paused
self._check_document_paused_status(dataset_document.id)
chunk_documents = documents[i:i + chunk_size]
2023-05-15 08:51:32 +08:00
tokens += sum(
TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
for document in chunk_documents
2023-05-15 08:51:32 +08:00
)
# save vector index
if vector_index:
vector_index.add_texts(chunk_documents)
2023-05-15 08:51:32 +08:00
# save keyword index
keyword_table_index.add_texts(chunk_documents)
2023-05-15 08:51:32 +08:00
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
2023-05-15 08:51:32 +08:00
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.index_node_id.in_(document_ids),
2023-05-15 08:51:32 +08:00
DocumentSegment.status == "indexing"
).update({
DocumentSegment.status: "completed",
DocumentSegment.completed_at: datetime.datetime.utcnow()
})
db.session.commit()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
after_indexing_status="completed",
extra_update_params={
DatasetDocument.tokens: tokens,
DatasetDocument.completed_at: datetime.datetime.utcnow(),
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
2023-05-15 08:51:32 +08:00
}
)
def _check_document_paused_status(self, document_id: str):
indexing_cache_key = 'document_{}_is_paused'.format(document_id)
result = redis_client.get(indexing_cache_key)
if result:
raise DocumentIsPausedException()
def _update_document_index_status(self, document_id: str, after_indexing_status: str,
extra_update_params: Optional[dict] = None) -> None:
"""
Update the document indexing status.
"""
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
2023-05-15 08:51:32 +08:00
if count > 0:
raise DocumentIsPausedException()
update_params = {
DatasetDocument.indexing_status: after_indexing_status
2023-05-15 08:51:32 +08:00
}
if extra_update_params:
update_params.update(extra_update_params)
DatasetDocument.query.filter_by(id=document_id).update(update_params)
2023-05-15 08:51:32 +08:00
db.session.commit()
def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
2023-05-15 08:51:32 +08:00
"""
Update the document segment by document id.
"""
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
2023-05-15 08:51:32 +08:00
db.session.commit()
class DocumentIsPausedException(Exception):
pass