dify/api/core/features/assistant_fc_runner.py

420 lines
18 KiB
Python
Raw Normal View History

import json
import logging
from typing import Union, Generator, Dict, Any, Tuple, List
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
2024-01-30 15:25:37 +08:00
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage, LLMResultChunkDelta
from core.model_manager import ModelInstance
from core.application_queue_manager import PublishFrom
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
2024-01-31 11:58:07 +08:00
ToolNotSupportedError, ToolProviderNotFoundError, ToolParameterValidationError, \
ToolProviderCredentialValidationError
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from models.model import Conversation, Message, MessageAgentThought
logger = logging.getLogger(__name__)
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
2024-01-30 15:25:37 +08:00
def run(self, conversation: Conversation,
message: Message,
query: str,
) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
app_orchestration_config = self.app_orchestration_config
prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or ''
prompt_messages = self.history_prompt_messages
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
query=query,
prompt_messages=prompt_messages
)
# convert tools into ModelRuntime Tool format
prompt_messages_tools: List[PromptMessageTool] = []
tool_instances = {}
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
# api tool may be deleted
continue
# save tool entity
tool_instances[tool.tool_name] = tool_entity
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# convert dataset tools into ModelRuntime Tool format
for dataset_tool in self.dataset_tools:
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# save tool entity
tool_instances[dataset_tool.identity.name] = dataset_tool
iteration_step = 1
max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1
# continue to run until there is not any tool call
function_call_state = True
agent_thoughts: List[MessageAgentThought] = []
llm_usage = {
'usage': None
}
final_answer = ''
def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
else:
llm_usage = final_llm_usage_dict['usage']
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
2024-01-30 15:25:37 +08:00
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids = []
agent_thought = self.create_agent_thought(
message_id=message.id,
message='',
tool_name='',
tool_input='',
messages_ids=message_file_ids
)
# recale llm max tokens
self.recale_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
2024-01-30 15:25:37 +08:00
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
tools=prompt_messages_tools,
stop=app_orchestration_config.model_config.stop,
2024-01-30 15:25:37 +08:00
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
tool_calls: List[Tuple[str, str, Dict[str, Any]]] = []
# save full response
response = ''
# save tool call names and inputs
tool_call_names = ''
tool_call_inputs = ''
current_llm_usage = None
2024-01-30 15:25:37 +08:00
if self.stream_tool_call:
2024-02-01 15:30:50 +08:00
is_first_chunk = True
2024-01-30 15:25:37 +08:00
for chunk in chunks:
2024-02-01 15:30:50 +08:00
if is_first_chunk:
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
is_first_chunk = False
2024-01-30 15:25:37 +08:00
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
}, ensure_ascii=False)
except json.JSONDecodeError as e:
# ensure ascii to avoid encoding error
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += chunk.delta.message.content
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result: LLMResult = chunks
# check if there is any tool call
2024-01-30 15:25:37 +08:00
if self.check_blocking_tool_calls(result):
function_call_state = True
2024-01-30 15:25:37 +08:00
tool_calls.extend(self.extract_blocking_tool_calls(result))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
}, ensure_ascii=False)
except json.JSONDecodeError as e:
# ensure ascii to avoid encoding error
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
2024-01-30 15:25:37 +08:00
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
2024-01-30 15:25:37 +08:00
response += result.message.content
if not result.message.content:
result.message.content = ''
2024-02-01 15:30:50 +08:00
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
2024-01-30 15:25:37 +08:00
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
)
)
2024-01-30 15:25:37 +08:00
if tool_calls:
prompt_messages.append(AssistantPromptMessage(
content='',
name='',
tool_calls=[AssistantPromptMessage.ToolCall(
id=tool_call[0],
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1],
arguments=json.dumps(tool_call[2], ensure_ascii=False)
)
) for tool_call in tool_calls]
))
# save thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
final_answer += response + '\n'
2024-01-30 15:25:37 +08:00
# update prompt messages
if response.strip():
prompt_messages.append(AssistantPromptMessage(
content=response,
))
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}"
}
tool_responses.append(tool_response)
else:
# invoke tool
error_response = None
try:
tool_invoke_message = tool_instance.invoke(
user_id=self.user_id,
2024-01-31 11:58:07 +08:00
tool_parameters=tool_call_args,
)
# transform tool invoke message to get LLM friendly message
tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
# extract binary data from tool invoke message
binary_files = self.extract_tool_response_binary(tool_invoke_message)
# create message file
message_files = self.create_message_files(binary_files)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
# publish message file
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
except ToolProviderCredentialValidationError as e:
2024-02-01 17:09:59 +08:00
error_response = f"Please check your tool provider credentials"
except (
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
) as e:
error_response = f"there is not a tool named {tool_call_name}"
except (
2024-01-31 11:58:07 +08:00
ToolParameterValidationError
) as e:
2024-01-31 11:58:07 +08:00
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
except Exception as e:
error_response = f"unknown error: {e}"
if error_response:
observation = error_response
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": error_response
}
tool_responses.append(tool_response)
else:
observation = self._convert_tool_response_to_str(tool_invoke_message)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": observation
}
tool_responses.append(tool_response)
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
query=None,
tool_call_id=tool_call_id,
tool_call_name=tool_call_name,
tool_response=tool_response['tool_response'],
prompt_messages=prompt_messages,
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=None,
tool_input=None,
thought=None,
observation=tool_response['tool_response'],
answer=None,
messages_ids=message_file_ids
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish_message_end(LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer,
),
2024-01-24 15:34:17 +08:00
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
), PublishFrom.APPLICATION_MANAGER)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
2024-01-30 15:25:37 +08:00
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
))
return tool_calls
2024-01-30 15:25:37 +08:00
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
))
return tool_calls
def organize_prompt_messages(self, prompt_template: str,
query: str = None,
tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
prompt_messages: list[PromptMessage] = None
) -> list[PromptMessage]:
"""
Organize prompt messages
"""
if not prompt_messages:
prompt_messages = [
SystemPromptMessage(content=prompt_template),
UserPromptMessage(content=query),
]
else:
if tool_response:
prompt_messages = prompt_messages.copy()
prompt_messages.append(
ToolPromptMessage(
content=tool_response,
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
return prompt_messages