mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-12-02 03:07:59 +08:00
chore: apply ruff's pyflakes linter rules (#2420)
This commit is contained in:
parent
1b04382a9b
commit
14a19a3da9
@ -133,8 +133,8 @@ class AppListApi(Resource):
|
||||
|
||||
if not model_instance:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Default System Reasoning Model available. Please configure "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Default System Reasoning Model available. Please configure "
|
||||
"in the Settings -> Model Provider.")
|
||||
else:
|
||||
model_config_dict["model"]["provider"] = model_instance.provider
|
||||
model_config_dict["model"]["name"] = model_instance.model
|
||||
|
@ -288,8 +288,8 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
args['indexing_technique'])
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
elif args['info_list']['data_source_type'] == 'notion_import':
|
||||
@ -304,8 +304,8 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
args['indexing_technique'])
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
else:
|
||||
|
@ -296,8 +296,8 @@ class DatasetInitApi(Resource):
|
||||
)
|
||||
except InvokeAuthorizationError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
@ -372,8 +372,8 @@ class DocumentIndexingEstimateApi(DocumentResource):
|
||||
'English', dataset_id)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
@ -442,8 +442,8 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
||||
'English', dataset_id)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
elif dataset.data_source_type == 'notion_import':
|
||||
@ -456,8 +456,8 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
||||
None, 'English', dataset_id)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
else:
|
||||
|
@ -143,8 +143,8 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
@ -234,8 +234,8 @@ class DatasetDocumentSegmentAddApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
try:
|
||||
@ -286,8 +286,8 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
# check segment
|
||||
|
@ -76,8 +76,8 @@ class HitTestingApi(Resource):
|
||||
raise ProviderModelCurrentlyNotSupportError()
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model or Reranking Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model or Reranking Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except InvokeError as e:
|
||||
raise CompletionRequestError(e.description)
|
||||
except ValueError as e:
|
||||
|
@ -78,7 +78,7 @@ class ExploreAppMetaApi(InstalledAppResource):
|
||||
# get all tools
|
||||
tools = agent_config.get('tools', [])
|
||||
url_prefix = (current_app.config.get("CONSOLE_API_URL")
|
||||
+ f"/console/api/workspaces/current/tool-provider/builtin/")
|
||||
+ "/console/api/workspaces/current/tool-provider/builtin/")
|
||||
for tool in tools:
|
||||
keys = list(tool.keys())
|
||||
if len(keys) >= 4:
|
||||
|
@ -41,7 +41,7 @@ class WorkspaceWebappLogoApi(Resource):
|
||||
webapp_logo_file_id = custom_config.get('replace_webapp_logo') if custom_config is not None else None
|
||||
|
||||
if not webapp_logo_file_id:
|
||||
raise NotFound(f'webapp logo is not found')
|
||||
raise NotFound('webapp logo is not found')
|
||||
|
||||
try:
|
||||
generator, mimetype = FileService.get_public_image_preview(
|
||||
|
@ -32,7 +32,7 @@ class ToolFilePreviewApi(Resource):
|
||||
)
|
||||
|
||||
if not result:
|
||||
raise NotFound(f'file is not found')
|
||||
raise NotFound('file is not found')
|
||||
|
||||
generator, mimetype = result
|
||||
except Exception:
|
||||
|
@ -78,7 +78,7 @@ class AppMetaApi(AppApiResource):
|
||||
# get all tools
|
||||
tools = agent_config.get('tools', [])
|
||||
url_prefix = (current_app.config.get("CONSOLE_API_URL")
|
||||
+ f"/console/api/workspaces/current/tool-provider/builtin/")
|
||||
+ "/console/api/workspaces/current/tool-provider/builtin/")
|
||||
for tool in tools:
|
||||
keys = list(tool.keys())
|
||||
if len(keys) >= 4:
|
||||
|
@ -46,8 +46,8 @@ class SegmentApi(DatasetApiResource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
# validate args
|
||||
@ -90,8 +90,8 @@ class SegmentApi(DatasetApiResource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
@ -182,8 +182,8 @@ class DatasetSegmentApi(DatasetApiResource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
# check segment
|
||||
|
@ -77,7 +77,7 @@ class AppMeta(WebApiResource):
|
||||
# get all tools
|
||||
tools = agent_config.get('tools', [])
|
||||
url_prefix = (current_app.config.get("CONSOLE_API_URL")
|
||||
+ f"/console/api/workspaces/current/tool-provider/builtin/")
|
||||
+ "/console/api/workspaces/current/tool-provider/builtin/")
|
||||
for tool in tools:
|
||||
keys = list(tool.keys())
|
||||
if len(keys) >= 4:
|
||||
|
@ -38,7 +38,7 @@ class AssistantApplicationRunner(AppRunner):
|
||||
"""
|
||||
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
|
||||
if not app_record:
|
||||
raise ValueError(f"App not found")
|
||||
raise ValueError("App not found")
|
||||
|
||||
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
|
||||
|
||||
|
@ -35,7 +35,7 @@ class BasicApplicationRunner(AppRunner):
|
||||
"""
|
||||
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
|
||||
if not app_record:
|
||||
raise ValueError(f"App not found")
|
||||
raise ValueError("App not found")
|
||||
|
||||
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
|
||||
|
||||
|
@ -134,7 +134,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
result += f"result link: {response.message}. please tell user to check it."
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
|
||||
response.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
result += f"image has been created and sent to user already, you should tell user to check it now."
|
||||
result += "image has been created and sent to user already, you should tell user to check it now."
|
||||
else:
|
||||
result += f"tool response: {response.message}."
|
||||
|
||||
|
@ -238,7 +238,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
|
||||
message_file_ids = [message_file.id for message_file, _ in message_files]
|
||||
except ToolProviderCredentialValidationError as e:
|
||||
error_response = f"Please check your tool provider credentials"
|
||||
error_response = "Please check your tool provider credentials"
|
||||
except (
|
||||
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
||||
) as e:
|
||||
@ -473,7 +473,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
next_iteration = agent_prompt_message.next_iteration
|
||||
|
||||
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
||||
raise ValueError(f"first_prompt or next_iteration is required in CoT agent mode")
|
||||
raise ValueError("first_prompt or next_iteration is required in CoT agent mode")
|
||||
|
||||
# check instruction, tools, and tool_names slots
|
||||
if not first_prompt.find("{{instruction}}") >= 0:
|
||||
|
@ -277,7 +277,7 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
message_file_ids.append(message_file.id)
|
||||
|
||||
except ToolProviderCredentialValidationError as e:
|
||||
error_response = f"Please check your tool provider credentials"
|
||||
error_response = "Please check your tool provider credentials"
|
||||
except (
|
||||
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
||||
) as e:
|
||||
|
@ -26,7 +26,7 @@ class VectorIndex:
|
||||
vector_type = self._dataset.index_struct_dict['type']
|
||||
|
||||
if not vector_type:
|
||||
raise ValueError(f"Vector store must be specified.")
|
||||
raise ValueError("Vector store must be specified.")
|
||||
|
||||
if vector_type == "weaviate":
|
||||
from core.index.vector_index.weaviate_vector_index import WeaviateConfig, WeaviateVectorIndex
|
||||
|
@ -63,7 +63,7 @@ class ModelInstance:
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, LargeLanguageModel):
|
||||
raise Exception(f"Model type instance is not LargeLanguageModel")
|
||||
raise Exception("Model type instance is not LargeLanguageModel")
|
||||
|
||||
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
|
||||
return self.model_type_instance.invoke(
|
||||
@ -88,7 +88,7 @@ class ModelInstance:
|
||||
:return: embeddings result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
||||
raise Exception(f"Model type instance is not TextEmbeddingModel")
|
||||
raise Exception("Model type instance is not TextEmbeddingModel")
|
||||
|
||||
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
|
||||
return self.model_type_instance.invoke(
|
||||
@ -112,7 +112,7 @@ class ModelInstance:
|
||||
:return: rerank result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, RerankModel):
|
||||
raise Exception(f"Model type instance is not RerankModel")
|
||||
raise Exception("Model type instance is not RerankModel")
|
||||
|
||||
self.model_type_instance = cast(RerankModel, self.model_type_instance)
|
||||
return self.model_type_instance.invoke(
|
||||
@ -135,7 +135,7 @@ class ModelInstance:
|
||||
:return: false if text is safe, true otherwise
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, ModerationModel):
|
||||
raise Exception(f"Model type instance is not ModerationModel")
|
||||
raise Exception("Model type instance is not ModerationModel")
|
||||
|
||||
self.model_type_instance = cast(ModerationModel, self.model_type_instance)
|
||||
return self.model_type_instance.invoke(
|
||||
@ -155,7 +155,7 @@ class ModelInstance:
|
||||
:return: text for given audio file
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, Speech2TextModel):
|
||||
raise Exception(f"Model type instance is not Speech2TextModel")
|
||||
raise Exception("Model type instance is not Speech2TextModel")
|
||||
|
||||
self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
|
||||
return self.model_type_instance.invoke(
|
||||
@ -176,7 +176,7 @@ class ModelInstance:
|
||||
:return: text for given audio file
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TTSModel):
|
||||
raise Exception(f"Model type instance is not TTSModel")
|
||||
raise Exception("Model type instance is not TTSModel")
|
||||
|
||||
self.model_type_instance = cast(TTSModel, self.model_type_instance)
|
||||
return self.model_type_instance.invoke(
|
||||
|
@ -30,7 +30,7 @@ class LoggingCallback(Callback):
|
||||
"""
|
||||
self.print_text("\n[on_llm_before_invoke]\n", color='blue')
|
||||
self.print_text(f"Model: {model}\n", color='blue')
|
||||
self.print_text(f"Parameters:\n", color='blue')
|
||||
self.print_text("Parameters:\n", color='blue')
|
||||
for key, value in model_parameters.items():
|
||||
self.print_text(f"\t{key}: {value}\n", color='blue')
|
||||
|
||||
@ -38,7 +38,7 @@ class LoggingCallback(Callback):
|
||||
self.print_text(f"\tstop: {stop}\n", color='blue')
|
||||
|
||||
if tools:
|
||||
self.print_text(f"\tTools:\n", color='blue')
|
||||
self.print_text("\tTools:\n", color='blue')
|
||||
for tool in tools:
|
||||
self.print_text(f"\t\t{tool.name}\n", color='blue')
|
||||
|
||||
@ -47,7 +47,7 @@ class LoggingCallback(Callback):
|
||||
if user:
|
||||
self.print_text(f"User: {user}\n", color='blue')
|
||||
|
||||
self.print_text(f"Prompt messages:\n", color='blue')
|
||||
self.print_text("Prompt messages:\n", color='blue')
|
||||
for prompt_message in prompt_messages:
|
||||
if prompt_message.name:
|
||||
self.print_text(f"\tname: {prompt_message.name}\n", color='blue')
|
||||
@ -101,7 +101,7 @@ class LoggingCallback(Callback):
|
||||
self.print_text(f"Content: {result.message.content}\n", color='yellow')
|
||||
|
||||
if result.message.tool_calls:
|
||||
self.print_text(f"Tool calls:\n", color='yellow')
|
||||
self.print_text("Tool calls:\n", color='yellow')
|
||||
for tool_call in result.message.tool_calls:
|
||||
self.print_text(f"\t{tool_call.id}\n", color='yellow')
|
||||
self.print_text(f"\t{tool_call.function.name}\n", color='yellow')
|
||||
|
@ -110,7 +110,7 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
||||
stop: List[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
if tools is not None and len(tools) > 0:
|
||||
raise InvokeBadRequestError(f"Baichuan model doesn't support tools")
|
||||
raise InvokeBadRequestError("Baichuan model doesn't support tools")
|
||||
|
||||
instance = BaichuanModel(
|
||||
api_key=credentials['api_key'],
|
||||
|
@ -146,16 +146,16 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
||||
try:
|
||||
json_result = response.json()
|
||||
except json.JSONDecodeError as e:
|
||||
raise CredentialsValidateFailedError(f'Credentials validation failed: JSON decode error')
|
||||
raise CredentialsValidateFailedError('Credentials validation failed: JSON decode error')
|
||||
|
||||
if (completion_type is LLMMode.CHAT
|
||||
and ('object' not in json_result or json_result['object'] != 'chat.completion')):
|
||||
raise CredentialsValidateFailedError(
|
||||
f'Credentials validation failed: invalid response object, must be \'chat.completion\'')
|
||||
'Credentials validation failed: invalid response object, must be \'chat.completion\'')
|
||||
elif (completion_type is LLMMode.COMPLETION
|
||||
and ('object' not in json_result or json_result['object'] != 'text_completion')):
|
||||
raise CredentialsValidateFailedError(
|
||||
f'Credentials validation failed: invalid response object, must be \'text_completion\'')
|
||||
'Credentials validation failed: invalid response object, must be \'text_completion\'')
|
||||
except CredentialsValidateFailedError:
|
||||
raise
|
||||
except Exception as ex:
|
||||
|
@ -179,11 +179,11 @@ class OAICompatEmbeddingModel(_CommonOAI_API_Compat, TextEmbeddingModel):
|
||||
try:
|
||||
json_result = response.json()
|
||||
except json.JSONDecodeError as e:
|
||||
raise CredentialsValidateFailedError(f'Credentials validation failed: JSON decode error')
|
||||
raise CredentialsValidateFailedError('Credentials validation failed: JSON decode error')
|
||||
|
||||
if 'model' not in json_result:
|
||||
raise CredentialsValidateFailedError(
|
||||
f'Credentials validation failed: invalid response')
|
||||
'Credentials validation failed: invalid response')
|
||||
except CredentialsValidateFailedError:
|
||||
raise
|
||||
except Exception as ex:
|
||||
|
@ -231,15 +231,15 @@ class ErnieBotModel(object):
|
||||
# so, we just disable function calling for now.
|
||||
|
||||
if tools is not None and len(tools) > 0:
|
||||
raise BadRequestError(f'function calling is not supported yet.')
|
||||
raise BadRequestError('function calling is not supported yet.')
|
||||
|
||||
if stop is not None:
|
||||
if len(stop) > 4:
|
||||
raise BadRequestError(f'stop list should not exceed 4 items.')
|
||||
raise BadRequestError('stop list should not exceed 4 items.')
|
||||
|
||||
for s in stop:
|
||||
if len(s) > 20:
|
||||
raise BadRequestError(f'stop item should not exceed 20 characters.')
|
||||
raise BadRequestError('stop item should not exceed 20 characters.')
|
||||
|
||||
def _build_request_body(self, model: str, messages: List[ErnieMessage], stream: bool, parameters: Dict[str, Any],
|
||||
tools: List[PromptMessageTool], stop: List[str], user: str) -> Dict[str, Any]:
|
||||
@ -252,9 +252,9 @@ class ErnieBotModel(object):
|
||||
stop: List[str], user: str) \
|
||||
-> Dict[str, Any]:
|
||||
if len(messages) % 2 == 0:
|
||||
raise BadRequestError(f'The number of messages should be odd.')
|
||||
raise BadRequestError('The number of messages should be odd.')
|
||||
if messages[0].role == 'function':
|
||||
raise BadRequestError(f'The first message should be user message.')
|
||||
raise BadRequestError('The first message should be user message.')
|
||||
|
||||
"""
|
||||
TODO: implement function calling
|
||||
@ -264,7 +264,7 @@ class ErnieBotModel(object):
|
||||
parameters: Dict[str, Any], stop: List[str], user: str) \
|
||||
-> Dict[str, Any]:
|
||||
if len(messages) == 0:
|
||||
raise BadRequestError(f'The number of messages should not be zero.')
|
||||
raise BadRequestError('The number of messages should not be zero.')
|
||||
|
||||
# check if the first element is system, shift it
|
||||
system_message = ''
|
||||
@ -273,9 +273,9 @@ class ErnieBotModel(object):
|
||||
system_message = message.content
|
||||
|
||||
if len(messages) % 2 == 0:
|
||||
raise BadRequestError(f'The number of messages should be odd.')
|
||||
raise BadRequestError('The number of messages should be odd.')
|
||||
if messages[0].role != 'user':
|
||||
raise BadRequestError(f'The first message should be user message.')
|
||||
raise BadRequestError('The first message should be user message.')
|
||||
body = {
|
||||
'messages': [message.to_dict() for message in messages],
|
||||
'stream': stream,
|
||||
|
@ -37,7 +37,7 @@ class ZhipuAI(HttpClient):
|
||||
if base_url is None:
|
||||
base_url = os.environ.get("ZHIPUAI_BASE_URL")
|
||||
if base_url is None:
|
||||
base_url = f"https://open.bigmodel.cn/api/paas/v4"
|
||||
base_url = "https://open.bigmodel.cn/api/paas/v4"
|
||||
from .__version__ import __version__
|
||||
super().__init__(
|
||||
version=__version__,
|
||||
|
@ -19,11 +19,11 @@ class RuleConfigGeneratorOutputParser(BaseOutputParser):
|
||||
raise ValueError("Expected 'prompt' to be a string.")
|
||||
if not isinstance(parsed["variables"], list):
|
||||
raise ValueError(
|
||||
f"Expected 'variables' to be a list."
|
||||
"Expected 'variables' to be a list."
|
||||
)
|
||||
if not isinstance(parsed["opening_statement"], str):
|
||||
raise ValueError(
|
||||
f"Expected 'opening_statement' to be a str."
|
||||
"Expected 'opening_statement' to be a str."
|
||||
)
|
||||
return parsed
|
||||
except Exception as e:
|
||||
|
@ -39,13 +39,13 @@ class ToolModelManager:
|
||||
)
|
||||
|
||||
if not model_instance:
|
||||
raise InvokeModelError(f'Model not found')
|
||||
raise InvokeModelError('Model not found')
|
||||
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
|
||||
if not schema:
|
||||
raise InvokeModelError(f'No model schema found')
|
||||
raise InvokeModelError('No model schema found')
|
||||
|
||||
max_tokens = schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE, None)
|
||||
if max_tokens is None:
|
||||
@ -69,7 +69,7 @@ class ToolModelManager:
|
||||
)
|
||||
|
||||
if not model_instance:
|
||||
raise InvokeModelError(f'Model not found')
|
||||
raise InvokeModelError('Model not found')
|
||||
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
|
||||
@ -156,7 +156,7 @@ class ToolModelManager:
|
||||
except InvokeConnectionError as e:
|
||||
raise InvokeModelError(f'Invoke connection error: {e}')
|
||||
except InvokeAuthorizationError as e:
|
||||
raise InvokeModelError(f'Invoke authorization error')
|
||||
raise InvokeModelError('Invoke authorization error')
|
||||
except InvokeServerUnavailableError as e:
|
||||
raise InvokeModelError(f'Invoke server unavailable error: {e}')
|
||||
except Exception as e:
|
||||
|
@ -66,5 +66,5 @@ class YahooFinanceAnalyticsTool(BuiltinTool):
|
||||
try:
|
||||
return self.create_text_message(str(summary_df.to_dict()))
|
||||
except (HTTPError, ReadTimeout):
|
||||
return self.create_text_message(f'There is a internet connection problem. Please try again later.')
|
||||
return self.create_text_message('There is a internet connection problem. Please try again later.')
|
||||
|
@ -21,7 +21,7 @@ class YahooFinanceSearchTickerTool(BuiltinTool):
|
||||
try:
|
||||
return self.run(ticker=query, user_id=user_id)
|
||||
except (HTTPError, ReadTimeout):
|
||||
return self.create_text_message(f'There is a internet connection problem. Please try again later.')
|
||||
return self.create_text_message('There is a internet connection problem. Please try again later.')
|
||||
|
||||
def run(self, ticker: str, user_id: str) -> ToolInvokeMessage:
|
||||
company = yfinance.Ticker(ticker)
|
||||
|
@ -20,7 +20,7 @@ class YahooFinanceSearchTickerTool(BuiltinTool):
|
||||
try:
|
||||
return self.create_text_message(self.run(ticker=query))
|
||||
except (HTTPError, ReadTimeout):
|
||||
return self.create_text_message(f'There is a internet connection problem. Please try again later.')
|
||||
return self.create_text_message('There is a internet connection problem. Please try again later.')
|
||||
|
||||
def run(self, ticker: str) -> str:
|
||||
return str(Ticker(ticker).info)
|
@ -221,7 +221,7 @@ class Tool(BaseModel, ABC):
|
||||
result += f"result link: {response.message}. please tell user to check it."
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
|
||||
response.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
result += f"image has been created and sent to user already, you should tell user to check it now."
|
||||
result += "image has been created and sent to user already, you should tell user to check it now."
|
||||
elif response.type == ToolInvokeMessage.MessageType.BLOB:
|
||||
if len(response.message) > 114:
|
||||
result += str(response.message[:114]) + '...'
|
||||
|
@ -101,7 +101,7 @@ class datetime_string(object):
|
||||
datetime.strptime(value, self.format)
|
||||
except ValueError:
|
||||
error = ('Invalid {arg}: {val}. {arg} must be conform to the format {format}'
|
||||
.format(arg=self.argument, val=value, lo=self.format))
|
||||
.format(arg=self.argument, val=value, format=self.format))
|
||||
raise ValueError(error)
|
||||
|
||||
return value
|
||||
|
@ -11,8 +11,13 @@ line-length = 120
|
||||
[tool.ruff.lint]
|
||||
ignore-init-module-imports = true
|
||||
select = [
|
||||
"F401", # unused-import
|
||||
"F", # pyflakes rules
|
||||
"I001", # unsorted-imports
|
||||
"I002", # missing-required-import
|
||||
"F811", # redefined-while-unused
|
||||
]
|
||||
ignore = [
|
||||
"F403", # undefined-local-with-import-star
|
||||
"F405", # undefined-local-with-import-star-usage
|
||||
"F821", # undefined-name
|
||||
"F841", # unused-variable
|
||||
]
|
||||
|
@ -139,8 +139,8 @@ class DatasetService:
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ValueError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ValueError(f"The dataset in unavailable, due to: "
|
||||
f"{ex.description}")
|
||||
@ -176,8 +176,8 @@ class DatasetService:
|
||||
filtered_data['collection_binding_id'] = dataset_collection_binding.id
|
||||
except LLMBadRequestError:
|
||||
raise ValueError(
|
||||
f"No Embedding Model available. Please configure a valid provider "
|
||||
f"in the Settings -> Model Provider.")
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider.")
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ValueError(ex.description)
|
||||
|
||||
|
@ -50,7 +50,7 @@ class ToolManageService:
|
||||
:param provider: the provider dict
|
||||
"""
|
||||
url_prefix = (current_app.config.get("CONSOLE_API_URL")
|
||||
+ f"/console/api/workspaces/current/tool-provider/builtin/")
|
||||
+ "/console/api/workspaces/current/tool-provider/builtin/")
|
||||
|
||||
if 'icon' in provider:
|
||||
if provider['type'] == UserToolProvider.ProviderType.BUILTIN.value:
|
||||
@ -211,7 +211,7 @@ class ToolManageService:
|
||||
tool_bundles, schema_type = ToolManageService.convert_schema_to_tool_bundles(schema, extra_info)
|
||||
|
||||
if len(tool_bundles) > 10:
|
||||
raise ValueError(f'the number of apis should be less than 10')
|
||||
raise ValueError('the number of apis should be less than 10')
|
||||
|
||||
# create db provider
|
||||
db_provider = ApiToolProvider(
|
||||
@ -269,7 +269,7 @@ class ToolManageService:
|
||||
# try to parse schema, avoid SSRF attack
|
||||
ToolManageService.parser_api_schema(schema)
|
||||
except Exception as e:
|
||||
raise ValueError(f'invalid schema, please check the url you provided')
|
||||
raise ValueError('invalid schema, please check the url you provided')
|
||||
|
||||
return {
|
||||
'schema': schema
|
||||
@ -490,7 +490,7 @@ class ToolManageService:
|
||||
try:
|
||||
tool_bundles, _ = ApiBasedToolSchemaParser.auto_parse_to_tool_bundle(schema)
|
||||
except Exception as e:
|
||||
raise ValueError(f'invalid schema')
|
||||
raise ValueError('invalid schema')
|
||||
|
||||
# get tool bundle
|
||||
tool_bundle = next(filter(lambda tb: tb.operation_id == tool_name, tool_bundles), None)
|
||||
|
Loading…
Reference in New Issue
Block a user