mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-12-01 02:38:12 +08:00
fix: using api can not execute relyt vector database (#3766)
Co-authored-by: jingsi <jingsi@leadincloud.com>
This commit is contained in:
parent
bf9fc8fef4
commit
1be222af2e
@ -476,7 +476,7 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
vector_type = current_app.config['VECTOR_STORE']
|
||||
if vector_type == 'milvus':
|
||||
if vector_type == 'milvus' or vector_type == 'relyt':
|
||||
return {
|
||||
'retrieval_method': [
|
||||
'semantic_search'
|
||||
@ -498,7 +498,7 @@ class DatasetRetrievalSettingMockApi(Resource):
|
||||
@account_initialization_required
|
||||
def get(self, vector_type):
|
||||
|
||||
if vector_type == 'milvus':
|
||||
if vector_type == 'milvus' or vector_type == 'relyt':
|
||||
return {
|
||||
'retrieval_method': [
|
||||
'semantic_search'
|
||||
|
@ -1,16 +1,23 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
import uuid
|
||||
from typing import Any, Optional
|
||||
|
||||
from pgvecto_rs.sdk import PGVectoRs, Record
|
||||
from pydantic import BaseModel, root_validator
|
||||
from sqlalchemy import Column, Sequence, String, Table, create_engine, insert
|
||||
from sqlalchemy import text as sql_text
|
||||
from sqlalchemy.dialects.postgresql import JSON, TEXT
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
try:
|
||||
from sqlalchemy.orm import declarative_base
|
||||
except ImportError:
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
Base = declarative_base() # type: Any
|
||||
|
||||
|
||||
class RelytConfig(BaseModel):
|
||||
host: str
|
||||
@ -36,16 +43,14 @@ class RelytConfig(BaseModel):
|
||||
|
||||
class RelytVector(BaseVector):
|
||||
|
||||
def __init__(self, collection_name: str, config: RelytConfig, dim: int):
|
||||
def __init__(self, collection_name: str, config: RelytConfig, group_id: str):
|
||||
super().__init__(collection_name)
|
||||
self.embedding_dimension = 1536
|
||||
self._client_config = config
|
||||
self._url = f"postgresql+psycopg2://{config.user}:{config.password}@{config.host}:{config.port}/{config.database}"
|
||||
self._client = PGVectoRs(
|
||||
db_url=self._url,
|
||||
collection_name=self._collection_name,
|
||||
dimension=dim
|
||||
)
|
||||
self.client = create_engine(self._url)
|
||||
self._fields = []
|
||||
self._group_id = group_id
|
||||
|
||||
def get_type(self) -> str:
|
||||
return 'relyt'
|
||||
@ -54,6 +59,7 @@ class RelytVector(BaseVector):
|
||||
index_params = {}
|
||||
metadatas = [d.metadata for d in texts]
|
||||
self.create_collection(len(embeddings[0]))
|
||||
self.embedding_dimension = len(embeddings[0])
|
||||
self.add_texts(texts, embeddings)
|
||||
|
||||
def create_collection(self, dimension: int):
|
||||
@ -63,21 +69,21 @@ class RelytVector(BaseVector):
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
return
|
||||
index_name = f"{self._collection_name}_embedding_index"
|
||||
with Session(self._client._engine) as session:
|
||||
drop_statement = sql_text(f"DROP TABLE IF EXISTS collection_{self._collection_name}")
|
||||
with Session(self.client) as session:
|
||||
drop_statement = sql_text(f"""DROP TABLE IF EXISTS "{self._collection_name}"; """)
|
||||
session.execute(drop_statement)
|
||||
create_statement = sql_text(f"""
|
||||
CREATE TABLE IF NOT EXISTS collection_{self._collection_name} (
|
||||
id UUID PRIMARY KEY,
|
||||
text TEXT NOT NULL,
|
||||
meta JSONB NOT NULL,
|
||||
CREATE TABLE IF NOT EXISTS "{self._collection_name}" (
|
||||
id TEXT PRIMARY KEY,
|
||||
document TEXT NOT NULL,
|
||||
metadata JSON NOT NULL,
|
||||
embedding vector({dimension}) NOT NULL
|
||||
) using heap;
|
||||
""")
|
||||
session.execute(create_statement)
|
||||
index_statement = sql_text(f"""
|
||||
CREATE INDEX {index_name}
|
||||
ON collection_{self._collection_name} USING vectors(embedding vector_l2_ops)
|
||||
ON "{self._collection_name}" USING vectors(embedding vector_l2_ops)
|
||||
WITH (options = $$
|
||||
optimizing.optimizing_threads = 30
|
||||
segment.max_growing_segment_size = 2000
|
||||
@ -92,21 +98,62 @@ class RelytVector(BaseVector):
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
records = [Record.from_text(d.page_content, e, d.metadata) for d, e in zip(documents, embeddings)]
|
||||
pks = [str(r.id) for r in records]
|
||||
self._client.insert(records)
|
||||
return pks
|
||||
from pgvecto_rs.sqlalchemy import Vector
|
||||
|
||||
ids = [str(uuid.uuid1()) for _ in documents]
|
||||
metadatas = [d.metadata for d in documents]
|
||||
for metadata in metadatas:
|
||||
metadata['group_id'] = self._group_id
|
||||
texts = [d.page_content for d in documents]
|
||||
|
||||
# Define the table schema
|
||||
chunks_table = Table(
|
||||
self._collection_name,
|
||||
Base.metadata,
|
||||
Column("id", TEXT, primary_key=True),
|
||||
Column("embedding", Vector(len(embeddings[0]))),
|
||||
Column("document", String, nullable=True),
|
||||
Column("metadata", JSON, nullable=True),
|
||||
extend_existing=True,
|
||||
)
|
||||
|
||||
chunks_table_data = []
|
||||
with self.client.connect() as conn:
|
||||
with conn.begin():
|
||||
for document, metadata, chunk_id, embedding in zip(
|
||||
texts, metadatas, ids, embeddings
|
||||
):
|
||||
chunks_table_data.append(
|
||||
{
|
||||
"id": chunk_id,
|
||||
"embedding": embedding,
|
||||
"document": document,
|
||||
"metadata": metadata,
|
||||
}
|
||||
)
|
||||
|
||||
# Execute the batch insert when the batch size is reached
|
||||
if len(chunks_table_data) == 500:
|
||||
conn.execute(insert(chunks_table).values(chunks_table_data))
|
||||
# Clear the chunks_table_data list for the next batch
|
||||
chunks_table_data.clear()
|
||||
|
||||
# Insert any remaining records that didn't make up a full batch
|
||||
if chunks_table_data:
|
||||
conn.execute(insert(chunks_table).values(chunks_table_data))
|
||||
|
||||
return ids
|
||||
|
||||
def delete_by_document_id(self, document_id: str):
|
||||
ids = self.get_ids_by_metadata_field('document_id', document_id)
|
||||
if ids:
|
||||
self._client.delete_by_ids(ids)
|
||||
self.delete_by_uuids(ids)
|
||||
|
||||
def get_ids_by_metadata_field(self, key: str, value: str):
|
||||
result = None
|
||||
with Session(self._client._engine) as session:
|
||||
with Session(self.client) as session:
|
||||
select_statement = sql_text(
|
||||
f"SELECT id FROM collection_{self._collection_name} WHERE meta->>'{key}' = '{value}'; "
|
||||
f"""SELECT id FROM "{self._collection_name}" WHERE metadata->>'{key}' = '{value}'; """
|
||||
)
|
||||
result = session.execute(select_statement).fetchall()
|
||||
if result:
|
||||
@ -114,56 +161,140 @@ class RelytVector(BaseVector):
|
||||
else:
|
||||
return None
|
||||
|
||||
def delete_by_uuids(self, ids: list[str] = None):
|
||||
"""Delete by vector IDs.
|
||||
|
||||
Args:
|
||||
ids: List of ids to delete.
|
||||
"""
|
||||
from pgvecto_rs.sqlalchemy import Vector
|
||||
|
||||
if ids is None:
|
||||
raise ValueError("No ids provided to delete.")
|
||||
|
||||
# Define the table schema
|
||||
chunks_table = Table(
|
||||
self._collection_name,
|
||||
Base.metadata,
|
||||
Column("id", TEXT, primary_key=True),
|
||||
Column("embedding", Vector(self.embedding_dimension)),
|
||||
Column("document", String, nullable=True),
|
||||
Column("metadata", JSON, nullable=True),
|
||||
extend_existing=True,
|
||||
)
|
||||
|
||||
try:
|
||||
with self.client.connect() as conn:
|
||||
with conn.begin():
|
||||
delete_condition = chunks_table.c.id.in_(ids)
|
||||
conn.execute(chunks_table.delete().where(delete_condition))
|
||||
return True
|
||||
except Exception as e:
|
||||
print("Delete operation failed:", str(e)) # noqa: T201
|
||||
return False
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str):
|
||||
|
||||
ids = self.get_ids_by_metadata_field(key, value)
|
||||
if ids:
|
||||
self._client.delete_by_ids(ids)
|
||||
self.delete_by_uuids(ids)
|
||||
|
||||
def delete_by_ids(self, doc_ids: list[str]) -> None:
|
||||
with Session(self._client._engine) as session:
|
||||
|
||||
with Session(self.client) as session:
|
||||
ids_str = ','.join(f"'{doc_id}'" for doc_id in doc_ids)
|
||||
select_statement = sql_text(
|
||||
f"SELECT id FROM collection_{self._collection_name} WHERE meta->>'doc_id' in ('{doc_ids}'); "
|
||||
f"""SELECT id FROM "{self._collection_name}" WHERE metadata->>'doc_id' in ({ids_str}); """
|
||||
)
|
||||
result = session.execute(select_statement).fetchall()
|
||||
if result:
|
||||
ids = [item[0] for item in result]
|
||||
self._client.delete_by_ids(ids)
|
||||
self.delete_by_uuids(ids)
|
||||
|
||||
def delete(self) -> None:
|
||||
with Session(self._client._engine) as session:
|
||||
session.execute(sql_text(f"DROP TABLE IF EXISTS collection_{self._collection_name}"))
|
||||
with Session(self.client) as session:
|
||||
session.execute(sql_text(f"""DROP TABLE IF EXISTS "{self._collection_name}";"""))
|
||||
session.commit()
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
with Session(self._client._engine) as session:
|
||||
with Session(self.client) as session:
|
||||
select_statement = sql_text(
|
||||
f"SELECT id FROM collection_{self._collection_name} WHERE meta->>'doc_id' = '{id}' limit 1; "
|
||||
f"""SELECT id FROM "{self._collection_name}" WHERE metadata->>'doc_id' = '{id}' limit 1; """
|
||||
)
|
||||
result = session.execute(select_statement).fetchall()
|
||||
return len(result) > 0
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
from pgvecto_rs.sdk import filters
|
||||
filter_condition = filters.meta_contains(kwargs.get('filter'))
|
||||
results = self._client.search(
|
||||
top_k=int(kwargs.get('top_k')),
|
||||
results = self.similarity_search_with_score_by_vector(
|
||||
k=int(kwargs.get('top_k')),
|
||||
embedding=query_vector,
|
||||
filter=filter_condition
|
||||
filter=kwargs.get('filter')
|
||||
)
|
||||
|
||||
# Organize results.
|
||||
docs = []
|
||||
for record, dis in results:
|
||||
metadata = record.meta
|
||||
metadata['score'] = dis
|
||||
for document, score in results:
|
||||
score_threshold = kwargs.get('score_threshold') if kwargs.get('score_threshold') else 0.0
|
||||
if dis > score_threshold:
|
||||
doc = Document(page_content=record.text,
|
||||
metadata=metadata)
|
||||
docs.append(doc)
|
||||
if score > score_threshold:
|
||||
docs.append(document)
|
||||
return docs
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: list[float],
|
||||
k: int = 4,
|
||||
filter: Optional[dict] = None,
|
||||
) -> list[tuple[Document, float]]:
|
||||
# Add the filter if provided
|
||||
try:
|
||||
from sqlalchemy.engine import Row
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import Row from sqlalchemy.engine. "
|
||||
"Please 'pip install sqlalchemy>=1.4'."
|
||||
)
|
||||
|
||||
filter_condition = ""
|
||||
if filter is not None:
|
||||
conditions = [
|
||||
f"metadata->>{key!r} in ({', '.join(map(repr, value))})" if len(value) > 1
|
||||
else f"metadata->>{key!r} = {value[0]!r}"
|
||||
for key, value in filter.items()
|
||||
]
|
||||
filter_condition = f"WHERE {' AND '.join(conditions)}"
|
||||
|
||||
# Define the base query
|
||||
sql_query = f"""
|
||||
set vectors.enable_search_growing = on;
|
||||
set vectors.enable_search_write = on;
|
||||
SELECT document, metadata, embedding <-> :embedding as distance
|
||||
FROM "{self._collection_name}"
|
||||
{filter_condition}
|
||||
ORDER BY embedding <-> :embedding
|
||||
LIMIT :k
|
||||
"""
|
||||
|
||||
# Set up the query parameters
|
||||
embedding_str = ", ".join(format(x) for x in embedding)
|
||||
embedding_str = "[" + embedding_str + "]"
|
||||
params = {"embedding": embedding_str, "k": k}
|
||||
|
||||
# Execute the query and fetch the results
|
||||
with self.client.connect() as conn:
|
||||
results: Sequence[Row] = conn.execute(sql_text(sql_query), params).fetchall()
|
||||
|
||||
documents_with_scores = [
|
||||
(
|
||||
Document(
|
||||
page_content=result.document,
|
||||
metadata=result.metadata,
|
||||
),
|
||||
result.distance,
|
||||
)
|
||||
for result in results
|
||||
]
|
||||
return documents_with_scores
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
# milvus/zilliz/relyt doesn't support bm25 search
|
||||
return []
|
||||
|
@ -126,7 +126,6 @@ class Vector:
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
self._dataset.index_struct = json.dumps(index_struct_dict)
|
||||
dim = len(self._embeddings.embed_query("hello relyt"))
|
||||
return RelytVector(
|
||||
collection_name=collection_name,
|
||||
config=RelytConfig(
|
||||
@ -136,7 +135,7 @@ class Vector:
|
||||
password=config.get('RELYT_PASSWORD'),
|
||||
database=config.get('RELYT_DATABASE'),
|
||||
),
|
||||
dim=dim
|
||||
group_id=self._dataset.id
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
|
||||
|
@ -86,7 +86,7 @@ services:
|
||||
AZURE_BLOB_ACCOUNT_KEY: 'difyai'
|
||||
AZURE_BLOB_CONTAINER_NAME: 'difyai-container'
|
||||
AZURE_BLOB_ACCOUNT_URL: 'https://<your_account_name>.blob.core.windows.net'
|
||||
# The type of vector store to use. Supported values are `weaviate`, `qdrant`, `milvus`.
|
||||
# The type of vector store to use. Supported values are `weaviate`, `qdrant`, `milvus`, `relyt`.
|
||||
VECTOR_STORE: weaviate
|
||||
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
|
||||
WEAVIATE_ENDPOINT: http://weaviate:8080
|
||||
@ -109,6 +109,12 @@ services:
|
||||
MILVUS_PASSWORD: Milvus
|
||||
# The milvus tls switch.
|
||||
MILVUS_SECURE: 'false'
|
||||
# relyt configurations
|
||||
RELYT_HOST: db
|
||||
RELYT_PORT: 5432
|
||||
RELYT_USER: postgres
|
||||
RELYT_PASSWORD: difyai123456
|
||||
RELYT_DATABASE: postgres
|
||||
# Mail configuration, support: resend, smtp
|
||||
MAIL_TYPE: ''
|
||||
# default send from email address, if not specified
|
||||
@ -193,7 +199,7 @@ services:
|
||||
AZURE_BLOB_ACCOUNT_KEY: 'difyai'
|
||||
AZURE_BLOB_CONTAINER_NAME: 'difyai-container'
|
||||
AZURE_BLOB_ACCOUNT_URL: 'https://<your_account_name>.blob.core.windows.net'
|
||||
# The type of vector store to use. Supported values are `weaviate`, `qdrant`, `milvus`.
|
||||
# The type of vector store to use. Supported values are `weaviate`, `qdrant`, `milvus`, `relyt`.
|
||||
VECTOR_STORE: weaviate
|
||||
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
|
||||
WEAVIATE_ENDPOINT: http://weaviate:8080
|
||||
|
Loading…
Reference in New Issue
Block a user