chore: add create_json_message api for tools (#5440)

This commit is contained in:
非法操作 2024-06-24 15:46:16 +08:00 committed by GitHub
parent ba67206bb9
commit 1e28a8c033
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 48 additions and 160 deletions

View File

@ -32,7 +32,6 @@ from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.tools.entities.tool_entities import (
ToolInvokeMessage,
ToolParameter,
ToolRuntimeVariablePool,
)
@ -141,24 +140,6 @@ class BaseAgentRunner(AppRunner):
app_generate_entity.app_config.prompt_template.simple_prompt_template = ''
return app_generate_entity
def _convert_tool_response_to_str(self, tool_response: list[ToolInvokeMessage]) -> str:
"""
Handle tool response
"""
result = ''
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
result += response.message
elif response.type == ToolInvokeMessage.MessageType.LINK:
result += f"result link: {response.message}. please tell user to check it."
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += "image has been created and sent to user already, you do not need to create it, just tell the user to check it now."
else:
result += f"tool response: {response.message}."
return result
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
"""

View File

@ -95,6 +95,7 @@ class ToolInvokeMessage(BaseModel):
IMAGE = "image"
LINK = "link"
BLOB = "blob"
JSON = "json"
IMAGE_LINK = "image_link"
FILE_VAR = "file_var"
@ -102,7 +103,7 @@ class ToolInvokeMessage(BaseModel):
"""
plain text, image url or link url
"""
message: Union[str, bytes] = None
message: Union[str, bytes, dict] = None
meta: dict[str, Any] = None
save_as: str = ''

View File

@ -8,99 +8,36 @@ from core.tools.tool.builtin_tool import BuiltinTool
SERP_API_URL = "https://serpapi.com/search"
class SerpAPI:
"""
SerpAPI tool provider.
"""
def __init__(self, api_key: str) -> None:
"""Initialize SerpAPI tool provider."""
self.serpapi_api_key = api_key
class GoogleSearchTool(BuiltinTool):
def run(self, query: str, **kwargs: Any) -> str:
"""Run query through SerpAPI and parse result."""
typ = kwargs.get("result_type", "text")
return self._process_response(self.results(query), typ=typ)
def results(self, query: str) -> dict:
"""Run query through SerpAPI and return the raw result."""
params = self.get_params(query)
response = requests.get(url=SERP_API_URL, params=params)
response.raise_for_status()
return response.json()
def get_params(self, query: str) -> dict[str, str]:
"""Get parameters for SerpAPI."""
def _parse_response(self, response: dict) -> dict:
result = {}
if "knowledge_graph" in response:
result["title"] = response["knowledge_graph"].get("title", "")
result["description"] = response["knowledge_graph"].get("description", "")
if "organic_results" in response:
result["organic_results"] = [
{
"title": item.get("title", ""),
"link": item.get("link", ""),
"snippet": item.get("snippet", "")
}
for item in response["organic_results"]
]
return result
def _invoke(self,
user_id: str,
tool_parameters: dict[str, Any],
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
params = {
"api_key": self.serpapi_api_key,
"q": query,
"api_key": self.runtime.credentials['serpapi_api_key'],
"q": tool_parameters['query'],
"engine": "google",
"google_domain": "google.com",
"gl": "us",
"hl": "en"
}
return params
@staticmethod
def _process_response(res: dict, typ: str) -> str:
"""
Process response from SerpAPI.
SerpAPI doc: https://serpapi.com/search-api
Google search main results are called organic results
"""
if "error" in res:
raise ValueError(f"Got error from SerpAPI: {res['error']}")
toret = ""
if typ == "text":
if "knowledge_graph" in res and "description" in res["knowledge_graph"]:
toret += res["knowledge_graph"]["description"] + "\n"
if "organic_results" in res:
snippets = [
f"content: {item.get('snippet')}\nlink: {item.get('link')}"
for item in res["organic_results"]
if "snippet" in item
]
toret += "\n".join(snippets)
elif typ == "link":
if "knowledge_graph" in res and "source" in res["knowledge_graph"]:
toret += res["knowledge_graph"]["source"]["link"]
elif "organic_results" in res:
links = [
f"[{item['title']}]({item['link']})\n"
for item in res["organic_results"]
if "title" in item and "link" in item
]
toret += "\n".join(links)
elif "related_questions" in res:
questions = [
f"[{item['question']}]({item['link']})\n"
for item in res["related_questions"]
if "question" in item and "link" in item
]
toret += "\n".join(questions)
elif "related_searches" in res:
searches = [
f"[{item['query']}]({item['link']})\n"
for item in res["related_searches"]
if "query" in item and "link" in item
]
toret += "\n".join(searches)
if not toret:
toret = "No good search result found"
return toret
class GoogleSearchTool(BuiltinTool):
def _invoke(self,
user_id: str,
tool_parameters: dict[str, Any],
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
invoke tools
"""
query = tool_parameters['query']
result_type = tool_parameters['result_type']
api_key = self.runtime.credentials['serpapi_api_key']
result = SerpAPI(api_key).run(query, result_type=result_type)
if result_type == 'text':
return self.create_text_message(text=result)
return self.create_link_message(link=result)
response = requests.get(url=SERP_API_URL, params=params)
response.raise_for_status()
valuable_res = self._parse_response(response.json())
return self.create_json_message(valuable_res)

View File

@ -25,27 +25,3 @@ parameters:
pt_BR: used for searching
llm_description: key words for searching
form: llm
- name: result_type
type: select
required: true
options:
- value: text
label:
en_US: text
zh_Hans: 文本
pt_BR: texto
- value: link
label:
en_US: link
zh_Hans: 链接
pt_BR: link
default: link
label:
en_US: Result type
zh_Hans: 结果类型
pt_BR: Result type
human_description:
en_US: used for selecting the result type, text or link
zh_Hans: 用于选择结果类型,使用文本还是链接进行展示
pt_BR: used for selecting the result type, text or link
form: form

View File

@ -207,30 +207,7 @@ class Tool(BaseModel, ABC):
result = [result]
return result
def _convert_tool_response_to_str(self, tool_response: list[ToolInvokeMessage]) -> str:
"""
Handle tool response
"""
result = ''
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
result += response.message
elif response.type == ToolInvokeMessage.MessageType.LINK:
result += f"result link: {response.message}. please tell user to check it. \n"
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += "image has been created and sent to user already, you do not need to create it, just tell the user to check it now. \n"
elif response.type == ToolInvokeMessage.MessageType.BLOB:
if len(response.message) > 114:
result += str(response.message[:114]) + '...'
else:
result += str(response.message)
else:
result += f"tool response: {response.message}. \n"
return result
def _transform_tool_parameters_type(self, tool_parameters: dict[str, Any]) -> dict[str, Any]:
"""
Transform tool parameters type
@ -355,3 +332,12 @@ class Tool(BaseModel, ABC):
message=blob, meta=meta,
save_as=save_as
)
def create_json_message(self, object: dict) -> ToolInvokeMessage:
"""
create a json message
"""
return ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.JSON,
message=object
)

View File

@ -1,3 +1,4 @@
import json
from copy import deepcopy
from datetime import datetime, timezone
from mimetypes import guess_type
@ -188,6 +189,8 @@ class ToolEngine:
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += "image has been created and sent to user already, you do not need to create it, just tell the user to check it now."
elif response.type == ToolInvokeMessage.MessageType.JSON:
result += f"tool response: {json.dumps(response.message, ensure_ascii=False)}."
else:
result += f"tool response: {response.message}."

View File

@ -74,13 +74,14 @@ class ToolNode(BaseNode):
)
# convert tool messages
plain_text, files = self._convert_tool_messages(messages)
plain_text, files, json = self._convert_tool_messages(messages)
return NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
outputs={
'text': plain_text,
'files': files
'files': files,
'json': json
},
metadata={
NodeRunMetadataKey.TOOL_INFO: tool_info
@ -149,8 +150,9 @@ class ToolNode(BaseNode):
# extract plain text and files
files = self._extract_tool_response_binary(messages)
plain_text = self._extract_tool_response_text(messages)
json = self._extract_tool_response_json(messages)
return plain_text, files
return plain_text, files, json
def _extract_tool_response_binary(self, tool_response: list[ToolInvokeMessage]) -> list[FileVar]:
"""
@ -203,7 +205,9 @@ class ToolNode(BaseNode):
f'Link: {message.message}' if message.type == ToolInvokeMessage.MessageType.LINK else ''
for message in tool_response
])
def _extract_tool_response_json(self, tool_response: list[ToolInvokeMessage]) -> list[dict]:
return [message.message for message in tool_response if message.type == ToolInvokeMessage.MessageType.JSON]
@classmethod
def _extract_variable_selector_to_variable_mapping(cls, node_data: ToolNodeData) -> dict[str, list[str]]: