diff --git a/api/core/rag/datasource/vdb/analyticdb/analyticdb_vector.py b/api/core/rag/datasource/vdb/analyticdb/analyticdb_vector.py index 612542dab..6dcd98dcf 100644 --- a/api/core/rag/datasource/vdb/analyticdb/analyticdb_vector.py +++ b/api/core/rag/datasource/vdb/analyticdb/analyticdb_vector.py @@ -40,19 +40,8 @@ class AnalyticdbConfig(BaseModel): class AnalyticdbVector(BaseVector): - _instance = None - _init = False - - def __new__(cls, *args, **kwargs): - if cls._instance is None: - cls._instance = super().__new__(cls) - return cls._instance - def __init__(self, collection_name: str, config: AnalyticdbConfig): - # collection_name must be updated every time self._collection_name = collection_name.lower() - if AnalyticdbVector._init: - return try: from alibabacloud_gpdb20160503.client import Client from alibabacloud_tea_openapi import models as open_api_models @@ -62,7 +51,6 @@ class AnalyticdbVector(BaseVector): self._client_config = open_api_models.Config(user_agent="dify", **config.to_analyticdb_client_params()) self._client = Client(self._client_config) self._initialize() - AnalyticdbVector._init = True def _initialize(self) -> None: cache_key = f"vector_indexing_{self.config.instance_id}" @@ -257,11 +245,14 @@ class AnalyticdbVector(BaseVector): documents = [] for match in response.body.matches.match: if match.score > score_threshold: + metadata = json.loads(match.metadata.get("metadata_")) + metadata["score"] = match.score doc = Document( page_content=match.metadata.get("page_content"), - metadata=json.loads(match.metadata.get("metadata_")), + metadata=metadata, ) documents.append(doc) + documents = sorted(documents, key=lambda x: x.metadata["score"], reverse=True) return documents def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: @@ -286,12 +277,14 @@ class AnalyticdbVector(BaseVector): for match in response.body.matches.match: if match.score > score_threshold: metadata = json.loads(match.metadata.get("metadata_")) + metadata["score"] = match.score doc = Document( page_content=match.metadata.get("page_content"), vector=match.metadata.get("vector"), metadata=metadata, ) documents.append(doc) + documents = sorted(documents, key=lambda x: x.metadata["score"], reverse=True) return documents def delete(self) -> None: