mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-11-29 17:58:19 +08:00
Fix/langchain document schema (#2539)
Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
parent
769be13189
commit
91ea6fe4ee
@ -1,8 +1,7 @@
|
||||
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.entities.application_entities import InvokeFrom
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import DatasetQuery, DocumentSegment
|
||||
from models.model import DatasetRetrieverResource
|
||||
|
@ -9,7 +9,6 @@ from typing import Optional, cast
|
||||
|
||||
from flask import Flask, current_app
|
||||
from flask_login import current_user
|
||||
from langchain.text_splitter import TextSplitter
|
||||
from sqlalchemy.orm.exc import ObjectDeletedError
|
||||
|
||||
from core.docstore.dataset_docstore import DatasetDocumentStore
|
||||
@ -24,6 +23,7 @@ from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from core.splitter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
|
||||
from core.splitter.text_splitter import TextSplitter
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
|
@ -1,5 +1,4 @@
|
||||
|
||||
from langchain.schema import Document
|
||||
from core.rag.models.document import Document
|
||||
|
||||
|
||||
class ReorderRunner:
|
||||
|
@ -5,9 +5,9 @@ from typing import Any, Optional
|
||||
import requests
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Document as DocumentModel
|
||||
from models.source import DataSourceBinding
|
||||
|
@ -2,12 +2,11 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from langchain.text_splitter import TextSplitter
|
||||
|
||||
from core.model_manager import ModelInstance
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.models.document import Document
|
||||
from core.splitter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
|
||||
from core.splitter.text_splitter import TextSplitter
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
|
||||
|
||||
|
@ -1,4 +1,6 @@
|
||||
from typing import Optional
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@ -14,3 +16,64 @@ class Document(BaseModel):
|
||||
metadata: Optional[dict] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class BaseDocumentTransformer(ABC):
|
||||
"""Abstract base class for document transformation systems.
|
||||
|
||||
A document transformation system takes a sequence of Documents and returns a
|
||||
sequence of transformed Documents.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
|
||||
embeddings: Embeddings
|
||||
similarity_fn: Callable = cosine_similarity
|
||||
similarity_threshold: float = 0.95
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def transform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
stateful_documents = get_stateful_documents(documents)
|
||||
embedded_documents = _get_embeddings_from_stateful_docs(
|
||||
self.embeddings, stateful_documents
|
||||
)
|
||||
included_idxs = _filter_similar_embeddings(
|
||||
embedded_documents, self.similarity_fn, self.similarity_threshold
|
||||
)
|
||||
return [stateful_documents[i] for i in sorted(included_idxs)]
|
||||
|
||||
async def atransform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
raise NotImplementedError
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
@abstractmethod
|
||||
def transform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
"""Transform a list of documents.
|
||||
|
||||
Args:
|
||||
documents: A sequence of Documents to be transformed.
|
||||
|
||||
Returns:
|
||||
A list of transformed Documents.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
async def atransform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
"""Asynchronously transform a list of documents.
|
||||
|
||||
Args:
|
||||
documents: A sequence of Documents to be transformed.
|
||||
|
||||
Returns:
|
||||
A list of transformed Documents.
|
||||
"""
|
||||
|
@ -1,8 +1,7 @@
|
||||
from typing import Optional
|
||||
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.model_manager import ModelInstance
|
||||
from core.rag.models.document import Document
|
||||
|
||||
|
||||
class RerankRunner:
|
||||
|
@ -3,7 +3,10 @@ from __future__ import annotations
|
||||
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
from langchain.text_splitter import (
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
|
||||
from core.splitter.text_splitter import (
|
||||
TS,
|
||||
AbstractSet,
|
||||
Collection,
|
||||
@ -14,10 +17,6 @@ from langchain.text_splitter import (
|
||||
Union,
|
||||
)
|
||||
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
|
||||
|
||||
|
||||
class EnhanceRecursiveCharacterTextSplitter(RecursiveCharacterTextSplitter):
|
||||
"""
|
||||
|
903
api/core/splitter/text_splitter.py
Normal file
903
api/core/splitter/text_splitter.py
Normal file
@ -0,0 +1,903 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Callable, Collection, Iterable, Sequence, Set
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import (
|
||||
Any,
|
||||
Literal,
|
||||
Optional,
|
||||
TypedDict,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
|
||||
from core.rag.models.document import BaseDocumentTransformer, Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
TS = TypeVar("TS", bound="TextSplitter")
|
||||
|
||||
|
||||
def _split_text_with_regex(
|
||||
text: str, separator: str, keep_separator: bool
|
||||
) -> list[str]:
|
||||
# Now that we have the separator, split the text
|
||||
if separator:
|
||||
if keep_separator:
|
||||
# The parentheses in the pattern keep the delimiters in the result.
|
||||
_splits = re.split(f"({separator})", text)
|
||||
splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)]
|
||||
if len(_splits) % 2 == 0:
|
||||
splits += _splits[-1:]
|
||||
splits = [_splits[0]] + splits
|
||||
else:
|
||||
splits = re.split(separator, text)
|
||||
else:
|
||||
splits = list(text)
|
||||
return [s for s in splits if s != ""]
|
||||
|
||||
|
||||
class TextSplitter(BaseDocumentTransformer, ABC):
|
||||
"""Interface for splitting text into chunks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
chunk_size: int = 4000,
|
||||
chunk_overlap: int = 200,
|
||||
length_function: Callable[[str], int] = len,
|
||||
keep_separator: bool = False,
|
||||
add_start_index: bool = False,
|
||||
) -> None:
|
||||
"""Create a new TextSplitter.
|
||||
|
||||
Args:
|
||||
chunk_size: Maximum size of chunks to return
|
||||
chunk_overlap: Overlap in characters between chunks
|
||||
length_function: Function that measures the length of given chunks
|
||||
keep_separator: Whether to keep the separator in the chunks
|
||||
add_start_index: If `True`, includes chunk's start index in metadata
|
||||
"""
|
||||
if chunk_overlap > chunk_size:
|
||||
raise ValueError(
|
||||
f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
|
||||
f"({chunk_size}), should be smaller."
|
||||
)
|
||||
self._chunk_size = chunk_size
|
||||
self._chunk_overlap = chunk_overlap
|
||||
self._length_function = length_function
|
||||
self._keep_separator = keep_separator
|
||||
self._add_start_index = add_start_index
|
||||
|
||||
@abstractmethod
|
||||
def split_text(self, text: str) -> list[str]:
|
||||
"""Split text into multiple components."""
|
||||
|
||||
def create_documents(
|
||||
self, texts: list[str], metadatas: Optional[list[dict]] = None
|
||||
) -> list[Document]:
|
||||
"""Create documents from a list of texts."""
|
||||
_metadatas = metadatas or [{}] * len(texts)
|
||||
documents = []
|
||||
for i, text in enumerate(texts):
|
||||
index = -1
|
||||
for chunk in self.split_text(text):
|
||||
metadata = copy.deepcopy(_metadatas[i])
|
||||
if self._add_start_index:
|
||||
index = text.find(chunk, index + 1)
|
||||
metadata["start_index"] = index
|
||||
new_doc = Document(page_content=chunk, metadata=metadata)
|
||||
documents.append(new_doc)
|
||||
return documents
|
||||
|
||||
def split_documents(self, documents: Iterable[Document]) -> list[Document]:
|
||||
"""Split documents."""
|
||||
texts, metadatas = [], []
|
||||
for doc in documents:
|
||||
texts.append(doc.page_content)
|
||||
metadatas.append(doc.metadata)
|
||||
return self.create_documents(texts, metadatas=metadatas)
|
||||
|
||||
def _join_docs(self, docs: list[str], separator: str) -> Optional[str]:
|
||||
text = separator.join(docs)
|
||||
text = text.strip()
|
||||
if text == "":
|
||||
return None
|
||||
else:
|
||||
return text
|
||||
|
||||
def _merge_splits(self, splits: Iterable[str], separator: str) -> list[str]:
|
||||
# We now want to combine these smaller pieces into medium size
|
||||
# chunks to send to the LLM.
|
||||
separator_len = self._length_function(separator)
|
||||
|
||||
docs = []
|
||||
current_doc: list[str] = []
|
||||
total = 0
|
||||
for d in splits:
|
||||
_len = self._length_function(d)
|
||||
if (
|
||||
total + _len + (separator_len if len(current_doc) > 0 else 0)
|
||||
> self._chunk_size
|
||||
):
|
||||
if total > self._chunk_size:
|
||||
logger.warning(
|
||||
f"Created a chunk of size {total}, "
|
||||
f"which is longer than the specified {self._chunk_size}"
|
||||
)
|
||||
if len(current_doc) > 0:
|
||||
doc = self._join_docs(current_doc, separator)
|
||||
if doc is not None:
|
||||
docs.append(doc)
|
||||
# Keep on popping if:
|
||||
# - we have a larger chunk than in the chunk overlap
|
||||
# - or if we still have any chunks and the length is long
|
||||
while total > self._chunk_overlap or (
|
||||
total + _len + (separator_len if len(current_doc) > 0 else 0)
|
||||
> self._chunk_size
|
||||
and total > 0
|
||||
):
|
||||
total -= self._length_function(current_doc[0]) + (
|
||||
separator_len if len(current_doc) > 1 else 0
|
||||
)
|
||||
current_doc = current_doc[1:]
|
||||
current_doc.append(d)
|
||||
total += _len + (separator_len if len(current_doc) > 1 else 0)
|
||||
doc = self._join_docs(current_doc, separator)
|
||||
if doc is not None:
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
@classmethod
|
||||
def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter:
|
||||
"""Text splitter that uses HuggingFace tokenizer to count length."""
|
||||
try:
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
if not isinstance(tokenizer, PreTrainedTokenizerBase):
|
||||
raise ValueError(
|
||||
"Tokenizer received was not an instance of PreTrainedTokenizerBase"
|
||||
)
|
||||
|
||||
def _huggingface_tokenizer_length(text: str) -> int:
|
||||
return len(tokenizer.encode(text))
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import transformers python package. "
|
||||
"Please install it with `pip install transformers`."
|
||||
)
|
||||
return cls(length_function=_huggingface_tokenizer_length, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def from_tiktoken_encoder(
|
||||
cls: type[TS],
|
||||
encoding_name: str = "gpt2",
|
||||
model_name: Optional[str] = None,
|
||||
allowed_special: Union[Literal["all"], Set[str]] = set(),
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
|
||||
**kwargs: Any,
|
||||
) -> TS:
|
||||
"""Text splitter that uses tiktoken encoder to count length."""
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to calculate max_tokens_for_prompt. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
if model_name is not None:
|
||||
enc = tiktoken.encoding_for_model(model_name)
|
||||
else:
|
||||
enc = tiktoken.get_encoding(encoding_name)
|
||||
|
||||
def _tiktoken_encoder(text: str) -> int:
|
||||
return len(
|
||||
enc.encode(
|
||||
text,
|
||||
allowed_special=allowed_special,
|
||||
disallowed_special=disallowed_special,
|
||||
)
|
||||
)
|
||||
|
||||
if issubclass(cls, TokenTextSplitter):
|
||||
extra_kwargs = {
|
||||
"encoding_name": encoding_name,
|
||||
"model_name": model_name,
|
||||
"allowed_special": allowed_special,
|
||||
"disallowed_special": disallowed_special,
|
||||
}
|
||||
kwargs = {**kwargs, **extra_kwargs}
|
||||
|
||||
return cls(length_function=_tiktoken_encoder, **kwargs)
|
||||
|
||||
def transform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
"""Transform sequence of documents by splitting them."""
|
||||
return self.split_documents(list(documents))
|
||||
|
||||
async def atransform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
"""Asynchronously transform a sequence of documents by splitting them."""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class CharacterTextSplitter(TextSplitter):
|
||||
"""Splitting text that looks at characters."""
|
||||
|
||||
def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None:
|
||||
"""Create a new TextSplitter."""
|
||||
super().__init__(**kwargs)
|
||||
self._separator = separator
|
||||
|
||||
def split_text(self, text: str) -> list[str]:
|
||||
"""Split incoming text and return chunks."""
|
||||
# First we naively split the large input into a bunch of smaller ones.
|
||||
splits = _split_text_with_regex(text, self._separator, self._keep_separator)
|
||||
_separator = "" if self._keep_separator else self._separator
|
||||
return self._merge_splits(splits, _separator)
|
||||
|
||||
|
||||
class LineType(TypedDict):
|
||||
"""Line type as typed dict."""
|
||||
|
||||
metadata: dict[str, str]
|
||||
content: str
|
||||
|
||||
|
||||
class HeaderType(TypedDict):
|
||||
"""Header type as typed dict."""
|
||||
|
||||
level: int
|
||||
name: str
|
||||
data: str
|
||||
|
||||
|
||||
class MarkdownHeaderTextSplitter:
|
||||
"""Splitting markdown files based on specified headers."""
|
||||
|
||||
def __init__(
|
||||
self, headers_to_split_on: list[tuple[str, str]], return_each_line: bool = False
|
||||
):
|
||||
"""Create a new MarkdownHeaderTextSplitter.
|
||||
|
||||
Args:
|
||||
headers_to_split_on: Headers we want to track
|
||||
return_each_line: Return each line w/ associated headers
|
||||
"""
|
||||
# Output line-by-line or aggregated into chunks w/ common headers
|
||||
self.return_each_line = return_each_line
|
||||
# Given the headers we want to split on,
|
||||
# (e.g., "#, ##, etc") order by length
|
||||
self.headers_to_split_on = sorted(
|
||||
headers_to_split_on, key=lambda split: len(split[0]), reverse=True
|
||||
)
|
||||
|
||||
def aggregate_lines_to_chunks(self, lines: list[LineType]) -> list[Document]:
|
||||
"""Combine lines with common metadata into chunks
|
||||
Args:
|
||||
lines: Line of text / associated header metadata
|
||||
"""
|
||||
aggregated_chunks: list[LineType] = []
|
||||
|
||||
for line in lines:
|
||||
if (
|
||||
aggregated_chunks
|
||||
and aggregated_chunks[-1]["metadata"] == line["metadata"]
|
||||
):
|
||||
# If the last line in the aggregated list
|
||||
# has the same metadata as the current line,
|
||||
# append the current content to the last lines's content
|
||||
aggregated_chunks[-1]["content"] += " \n" + line["content"]
|
||||
else:
|
||||
# Otherwise, append the current line to the aggregated list
|
||||
aggregated_chunks.append(line)
|
||||
|
||||
return [
|
||||
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
||||
for chunk in aggregated_chunks
|
||||
]
|
||||
|
||||
def split_text(self, text: str) -> list[Document]:
|
||||
"""Split markdown file
|
||||
Args:
|
||||
text: Markdown file"""
|
||||
|
||||
# Split the input text by newline character ("\n").
|
||||
lines = text.split("\n")
|
||||
# Final output
|
||||
lines_with_metadata: list[LineType] = []
|
||||
# Content and metadata of the chunk currently being processed
|
||||
current_content: list[str] = []
|
||||
current_metadata: dict[str, str] = {}
|
||||
# Keep track of the nested header structure
|
||||
# header_stack: List[Dict[str, Union[int, str]]] = []
|
||||
header_stack: list[HeaderType] = []
|
||||
initial_metadata: dict[str, str] = {}
|
||||
|
||||
for line in lines:
|
||||
stripped_line = line.strip()
|
||||
# Check each line against each of the header types (e.g., #, ##)
|
||||
for sep, name in self.headers_to_split_on:
|
||||
# Check if line starts with a header that we intend to split on
|
||||
if stripped_line.startswith(sep) and (
|
||||
# Header with no text OR header is followed by space
|
||||
# Both are valid conditions that sep is being used a header
|
||||
len(stripped_line) == len(sep)
|
||||
or stripped_line[len(sep)] == " "
|
||||
):
|
||||
# Ensure we are tracking the header as metadata
|
||||
if name is not None:
|
||||
# Get the current header level
|
||||
current_header_level = sep.count("#")
|
||||
|
||||
# Pop out headers of lower or same level from the stack
|
||||
while (
|
||||
header_stack
|
||||
and header_stack[-1]["level"] >= current_header_level
|
||||
):
|
||||
# We have encountered a new header
|
||||
# at the same or higher level
|
||||
popped_header = header_stack.pop()
|
||||
# Clear the metadata for the
|
||||
# popped header in initial_metadata
|
||||
if popped_header["name"] in initial_metadata:
|
||||
initial_metadata.pop(popped_header["name"])
|
||||
|
||||
# Push the current header to the stack
|
||||
header: HeaderType = {
|
||||
"level": current_header_level,
|
||||
"name": name,
|
||||
"data": stripped_line[len(sep):].strip(),
|
||||
}
|
||||
header_stack.append(header)
|
||||
# Update initial_metadata with the current header
|
||||
initial_metadata[name] = header["data"]
|
||||
|
||||
# Add the previous line to the lines_with_metadata
|
||||
# only if current_content is not empty
|
||||
if current_content:
|
||||
lines_with_metadata.append(
|
||||
{
|
||||
"content": "\n".join(current_content),
|
||||
"metadata": current_metadata.copy(),
|
||||
}
|
||||
)
|
||||
current_content.clear()
|
||||
|
||||
break
|
||||
else:
|
||||
if stripped_line:
|
||||
current_content.append(stripped_line)
|
||||
elif current_content:
|
||||
lines_with_metadata.append(
|
||||
{
|
||||
"content": "\n".join(current_content),
|
||||
"metadata": current_metadata.copy(),
|
||||
}
|
||||
)
|
||||
current_content.clear()
|
||||
|
||||
current_metadata = initial_metadata.copy()
|
||||
|
||||
if current_content:
|
||||
lines_with_metadata.append(
|
||||
{"content": "\n".join(current_content), "metadata": current_metadata}
|
||||
)
|
||||
|
||||
# lines_with_metadata has each line with associated header metadata
|
||||
# aggregate these into chunks based on common metadata
|
||||
if not self.return_each_line:
|
||||
return self.aggregate_lines_to_chunks(lines_with_metadata)
|
||||
else:
|
||||
return [
|
||||
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
||||
for chunk in lines_with_metadata
|
||||
]
|
||||
|
||||
|
||||
# should be in newer Python versions (3.10+)
|
||||
# @dataclass(frozen=True, kw_only=True, slots=True)
|
||||
@dataclass(frozen=True)
|
||||
class Tokenizer:
|
||||
chunk_overlap: int
|
||||
tokens_per_chunk: int
|
||||
decode: Callable[[list[int]], str]
|
||||
encode: Callable[[str], list[int]]
|
||||
|
||||
|
||||
def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> list[str]:
|
||||
"""Split incoming text and return chunks using tokenizer."""
|
||||
splits: list[str] = []
|
||||
input_ids = tokenizer.encode(text)
|
||||
start_idx = 0
|
||||
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
|
||||
chunk_ids = input_ids[start_idx:cur_idx]
|
||||
while start_idx < len(input_ids):
|
||||
splits.append(tokenizer.decode(chunk_ids))
|
||||
start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
|
||||
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
|
||||
chunk_ids = input_ids[start_idx:cur_idx]
|
||||
return splits
|
||||
|
||||
|
||||
class TokenTextSplitter(TextSplitter):
|
||||
"""Splitting text to tokens using model tokenizer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoding_name: str = "gpt2",
|
||||
model_name: Optional[str] = None,
|
||||
allowed_special: Union[Literal["all"], Set[str]] = set(),
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Create a new TextSplitter."""
|
||||
super().__init__(**kwargs)
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to for TokenTextSplitter. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
if model_name is not None:
|
||||
enc = tiktoken.encoding_for_model(model_name)
|
||||
else:
|
||||
enc = tiktoken.get_encoding(encoding_name)
|
||||
self._tokenizer = enc
|
||||
self._allowed_special = allowed_special
|
||||
self._disallowed_special = disallowed_special
|
||||
|
||||
def split_text(self, text: str) -> list[str]:
|
||||
def _encode(_text: str) -> list[int]:
|
||||
return self._tokenizer.encode(
|
||||
_text,
|
||||
allowed_special=self._allowed_special,
|
||||
disallowed_special=self._disallowed_special,
|
||||
)
|
||||
|
||||
tokenizer = Tokenizer(
|
||||
chunk_overlap=self._chunk_overlap,
|
||||
tokens_per_chunk=self._chunk_size,
|
||||
decode=self._tokenizer.decode,
|
||||
encode=_encode,
|
||||
)
|
||||
|
||||
return split_text_on_tokens(text=text, tokenizer=tokenizer)
|
||||
|
||||
|
||||
class Language(str, Enum):
|
||||
"""Enum of the programming languages."""
|
||||
|
||||
CPP = "cpp"
|
||||
GO = "go"
|
||||
JAVA = "java"
|
||||
JS = "js"
|
||||
PHP = "php"
|
||||
PROTO = "proto"
|
||||
PYTHON = "python"
|
||||
RST = "rst"
|
||||
RUBY = "ruby"
|
||||
RUST = "rust"
|
||||
SCALA = "scala"
|
||||
SWIFT = "swift"
|
||||
MARKDOWN = "markdown"
|
||||
LATEX = "latex"
|
||||
HTML = "html"
|
||||
SOL = "sol"
|
||||
|
||||
|
||||
class RecursiveCharacterTextSplitter(TextSplitter):
|
||||
"""Splitting text by recursively look at characters.
|
||||
|
||||
Recursively tries to split by different characters to find one
|
||||
that works.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
separators: Optional[list[str]] = None,
|
||||
keep_separator: bool = True,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Create a new TextSplitter."""
|
||||
super().__init__(keep_separator=keep_separator, **kwargs)
|
||||
self._separators = separators or ["\n\n", "\n", " ", ""]
|
||||
|
||||
def _split_text(self, text: str, separators: list[str]) -> list[str]:
|
||||
"""Split incoming text and return chunks."""
|
||||
final_chunks = []
|
||||
# Get appropriate separator to use
|
||||
separator = separators[-1]
|
||||
new_separators = []
|
||||
for i, _s in enumerate(separators):
|
||||
if _s == "":
|
||||
separator = _s
|
||||
break
|
||||
if re.search(_s, text):
|
||||
separator = _s
|
||||
new_separators = separators[i + 1:]
|
||||
break
|
||||
|
||||
splits = _split_text_with_regex(text, separator, self._keep_separator)
|
||||
# Now go merging things, recursively splitting longer texts.
|
||||
_good_splits = []
|
||||
_separator = "" if self._keep_separator else separator
|
||||
for s in splits:
|
||||
if self._length_function(s) < self._chunk_size:
|
||||
_good_splits.append(s)
|
||||
else:
|
||||
if _good_splits:
|
||||
merged_text = self._merge_splits(_good_splits, _separator)
|
||||
final_chunks.extend(merged_text)
|
||||
_good_splits = []
|
||||
if not new_separators:
|
||||
final_chunks.append(s)
|
||||
else:
|
||||
other_info = self._split_text(s, new_separators)
|
||||
final_chunks.extend(other_info)
|
||||
if _good_splits:
|
||||
merged_text = self._merge_splits(_good_splits, _separator)
|
||||
final_chunks.extend(merged_text)
|
||||
return final_chunks
|
||||
|
||||
def split_text(self, text: str) -> list[str]:
|
||||
return self._split_text(text, self._separators)
|
||||
|
||||
@classmethod
|
||||
def from_language(
|
||||
cls, language: Language, **kwargs: Any
|
||||
) -> RecursiveCharacterTextSplitter:
|
||||
separators = cls.get_separators_for_language(language)
|
||||
return cls(separators=separators, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
def get_separators_for_language(language: Language) -> list[str]:
|
||||
if language == Language.CPP:
|
||||
return [
|
||||
# Split along class definitions
|
||||
"\nclass ",
|
||||
# Split along function definitions
|
||||
"\nvoid ",
|
||||
"\nint ",
|
||||
"\nfloat ",
|
||||
"\ndouble ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nfor ",
|
||||
"\nwhile ",
|
||||
"\nswitch ",
|
||||
"\ncase ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.GO:
|
||||
return [
|
||||
# Split along function definitions
|
||||
"\nfunc ",
|
||||
"\nvar ",
|
||||
"\nconst ",
|
||||
"\ntype ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nfor ",
|
||||
"\nswitch ",
|
||||
"\ncase ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.JAVA:
|
||||
return [
|
||||
# Split along class definitions
|
||||
"\nclass ",
|
||||
# Split along method definitions
|
||||
"\npublic ",
|
||||
"\nprotected ",
|
||||
"\nprivate ",
|
||||
"\nstatic ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nfor ",
|
||||
"\nwhile ",
|
||||
"\nswitch ",
|
||||
"\ncase ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.JS:
|
||||
return [
|
||||
# Split along function definitions
|
||||
"\nfunction ",
|
||||
"\nconst ",
|
||||
"\nlet ",
|
||||
"\nvar ",
|
||||
"\nclass ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nfor ",
|
||||
"\nwhile ",
|
||||
"\nswitch ",
|
||||
"\ncase ",
|
||||
"\ndefault ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.PHP:
|
||||
return [
|
||||
# Split along function definitions
|
||||
"\nfunction ",
|
||||
# Split along class definitions
|
||||
"\nclass ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nforeach ",
|
||||
"\nwhile ",
|
||||
"\ndo ",
|
||||
"\nswitch ",
|
||||
"\ncase ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.PROTO:
|
||||
return [
|
||||
# Split along message definitions
|
||||
"\nmessage ",
|
||||
# Split along service definitions
|
||||
"\nservice ",
|
||||
# Split along enum definitions
|
||||
"\nenum ",
|
||||
# Split along option definitions
|
||||
"\noption ",
|
||||
# Split along import statements
|
||||
"\nimport ",
|
||||
# Split along syntax declarations
|
||||
"\nsyntax ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.PYTHON:
|
||||
return [
|
||||
# First, try to split along class definitions
|
||||
"\nclass ",
|
||||
"\ndef ",
|
||||
"\n\tdef ",
|
||||
# Now split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.RST:
|
||||
return [
|
||||
# Split along section titles
|
||||
"\n=+\n",
|
||||
"\n-+\n",
|
||||
"\n\*+\n",
|
||||
# Split along directive markers
|
||||
"\n\n.. *\n\n",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.RUBY:
|
||||
return [
|
||||
# Split along method definitions
|
||||
"\ndef ",
|
||||
"\nclass ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nunless ",
|
||||
"\nwhile ",
|
||||
"\nfor ",
|
||||
"\ndo ",
|
||||
"\nbegin ",
|
||||
"\nrescue ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.RUST:
|
||||
return [
|
||||
# Split along function definitions
|
||||
"\nfn ",
|
||||
"\nconst ",
|
||||
"\nlet ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nwhile ",
|
||||
"\nfor ",
|
||||
"\nloop ",
|
||||
"\nmatch ",
|
||||
"\nconst ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.SCALA:
|
||||
return [
|
||||
# Split along class definitions
|
||||
"\nclass ",
|
||||
"\nobject ",
|
||||
# Split along method definitions
|
||||
"\ndef ",
|
||||
"\nval ",
|
||||
"\nvar ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nfor ",
|
||||
"\nwhile ",
|
||||
"\nmatch ",
|
||||
"\ncase ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.SWIFT:
|
||||
return [
|
||||
# Split along function definitions
|
||||
"\nfunc ",
|
||||
# Split along class definitions
|
||||
"\nclass ",
|
||||
"\nstruct ",
|
||||
"\nenum ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nfor ",
|
||||
"\nwhile ",
|
||||
"\ndo ",
|
||||
"\nswitch ",
|
||||
"\ncase ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.MARKDOWN:
|
||||
return [
|
||||
# First, try to split along Markdown headings (starting with level 2)
|
||||
"\n#{1,6} ",
|
||||
# Note the alternative syntax for headings (below) is not handled here
|
||||
# Heading level 2
|
||||
# ---------------
|
||||
# End of code block
|
||||
"```\n",
|
||||
# Horizontal lines
|
||||
"\n\*\*\*+\n",
|
||||
"\n---+\n",
|
||||
"\n___+\n",
|
||||
# Note that this splitter doesn't handle horizontal lines defined
|
||||
# by *three or more* of ***, ---, or ___, but this is not handled
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.LATEX:
|
||||
return [
|
||||
# First, try to split along Latex sections
|
||||
"\n\\\chapter{",
|
||||
"\n\\\section{",
|
||||
"\n\\\subsection{",
|
||||
"\n\\\subsubsection{",
|
||||
# Now split by environments
|
||||
"\n\\\begin{enumerate}",
|
||||
"\n\\\begin{itemize}",
|
||||
"\n\\\begin{description}",
|
||||
"\n\\\begin{list}",
|
||||
"\n\\\begin{quote}",
|
||||
"\n\\\begin{quotation}",
|
||||
"\n\\\begin{verse}",
|
||||
"\n\\\begin{verbatim}",
|
||||
# Now split by math environments
|
||||
"\n\\\begin{align}",
|
||||
"$$",
|
||||
"$",
|
||||
# Now split by the normal type of lines
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
elif language == Language.HTML:
|
||||
return [
|
||||
# First, try to split along HTML tags
|
||||
"<body",
|
||||
"<div",
|
||||
"<p",
|
||||
"<br",
|
||||
"<li",
|
||||
"<h1",
|
||||
"<h2",
|
||||
"<h3",
|
||||
"<h4",
|
||||
"<h5",
|
||||
"<h6",
|
||||
"<span",
|
||||
"<table",
|
||||
"<tr",
|
||||
"<td",
|
||||
"<th",
|
||||
"<ul",
|
||||
"<ol",
|
||||
"<header",
|
||||
"<footer",
|
||||
"<nav",
|
||||
# Head
|
||||
"<head",
|
||||
"<style",
|
||||
"<script",
|
||||
"<meta",
|
||||
"<title",
|
||||
"",
|
||||
]
|
||||
elif language == Language.SOL:
|
||||
return [
|
||||
# Split along compiler information definitions
|
||||
"\npragma ",
|
||||
"\nusing ",
|
||||
# Split along contract definitions
|
||||
"\ncontract ",
|
||||
"\ninterface ",
|
||||
"\nlibrary ",
|
||||
# Split along method definitions
|
||||
"\nconstructor ",
|
||||
"\ntype ",
|
||||
"\nfunction ",
|
||||
"\nevent ",
|
||||
"\nmodifier ",
|
||||
"\nerror ",
|
||||
"\nstruct ",
|
||||
"\nenum ",
|
||||
# Split along control flow statements
|
||||
"\nif ",
|
||||
"\nfor ",
|
||||
"\nwhile ",
|
||||
"\ndo while ",
|
||||
"\nassembly ",
|
||||
# Split by the normal type of lines
|
||||
"\n\n",
|
||||
"\n",
|
||||
" ",
|
||||
"",
|
||||
]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Language {language} is not supported! "
|
||||
f"Please choose from {list(Language)}"
|
||||
)
|
@ -13,7 +13,6 @@ import requests
|
||||
from bs4 import BeautifulSoup, CData, Comment, NavigableString
|
||||
from langchain.chains import RefineDocumentsChain
|
||||
from langchain.chains.summarize import refine_prompts
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.tools.base import BaseTool
|
||||
from newspaper import Article
|
||||
@ -24,6 +23,7 @@ from core.chain.llm_chain import LLMChain
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.rag.extractor import extract_processor
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.models.document import Document
|
||||
|
||||
FULL_TEMPLATE = """
|
||||
TITLE: {title}
|
||||
|
@ -13,7 +13,6 @@ import requests
|
||||
from bs4 import BeautifulSoup, CData, Comment, NavigableString
|
||||
from langchain.chains import RefineDocumentsChain
|
||||
from langchain.chains.summarize import refine_prompts
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.tools.base import BaseTool
|
||||
from newspaper import Article
|
||||
@ -24,6 +23,7 @@ from core.chain.llm_chain import LLMChain
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.rag.extractor import extract_processor
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.models.document import Document
|
||||
|
||||
FULL_TEMPLATE = """
|
||||
TITLE: {title}
|
||||
|
@ -3,9 +3,9 @@ import time
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.models.document import Document
|
||||
from models.dataset import Dataset
|
||||
from services.dataset_service import DatasetCollectionBindingService
|
||||
|
||||
|
@ -3,10 +3,10 @@ import time
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from langchain.schema import Document
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@ -4,10 +4,10 @@ import time
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from langchain.schema import Document
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@ -3,9 +3,9 @@ import time
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from langchain.schema import Document
|
||||
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.models.document import Document
|
||||
from models.dataset import Dataset
|
||||
from services.dataset_service import DatasetCollectionBindingService
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user