mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-11-30 02:08:37 +08:00
parent
ad5f27bc5f
commit
a43e80dd9c
@ -329,7 +329,7 @@ def create_qdrant_indexes():
|
||||
except Exception:
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
@ -369,6 +369,67 @@ def create_qdrant_indexes():
|
||||
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
|
||||
|
||||
|
||||
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
|
||||
def update_qdrant_indexes():
|
||||
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
|
||||
create_count = 0
|
||||
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
||||
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
||||
except NotFound:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for dataset in datasets:
|
||||
if dataset.index_struct_dict:
|
||||
if dataset.index_struct_dict['type'] != 'qdrant':
|
||||
try:
|
||||
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
|
||||
try:
|
||||
embedding_model = ModelFactory.get_embedding_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=dataset.embedding_model_provider,
|
||||
model_name=dataset.embedding_model
|
||||
)
|
||||
except Exception:
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider_name='openai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
||||
is_valid=True,
|
||||
)
|
||||
model_provider = OpenAIProvider(provider=provider)
|
||||
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
||||
|
||||
index = QdrantVectorIndex(
|
||||
dataset=dataset,
|
||||
config=QdrantConfig(
|
||||
endpoint=current_app.config.get('QDRANT_URL'),
|
||||
api_key=current_app.config.get('QDRANT_API_KEY'),
|
||||
root_path=current_app.root_path
|
||||
),
|
||||
embeddings=embeddings
|
||||
)
|
||||
if index:
|
||||
index.update_qdrant_dataset(dataset)
|
||||
create_count += 1
|
||||
else:
|
||||
click.echo('passed.')
|
||||
except Exception as e:
|
||||
click.echo(
|
||||
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
||||
continue
|
||||
|
||||
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
|
||||
|
||||
def register_commands(app):
|
||||
app.cli.add_command(reset_password)
|
||||
app.cli.add_command(reset_email)
|
||||
@ -378,3 +439,4 @@ def register_commands(app):
|
||||
app.cli.add_command(sync_anthropic_hosted_providers)
|
||||
app.cli.add_command(clean_unused_dataset_indexes)
|
||||
app.cli.add_command(create_qdrant_indexes)
|
||||
app.cli.add_command(update_qdrant_indexes)
|
@ -15,12 +15,12 @@ from models.dataset import Document as DatasetDocument
|
||||
|
||||
|
||||
class BaseVectorIndex(BaseIndex):
|
||||
|
||||
|
||||
def __init__(self, dataset: Dataset, embeddings: Embeddings):
|
||||
super().__init__(dataset)
|
||||
self._embeddings = embeddings
|
||||
self._vector_store = None
|
||||
|
||||
|
||||
def get_type(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@ -143,7 +143,7 @@ class BaseVectorIndex(BaseIndex):
|
||||
DocumentSegment.status == 'completed',
|
||||
DocumentSegment.enabled == True
|
||||
).all()
|
||||
|
||||
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
@ -218,4 +218,28 @@ class BaseVectorIndex(BaseIndex):
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
logging.info(f"Dataset {dataset.id} recreate successfully.")
|
||||
logging.info(f"Dataset {dataset.id} recreate successfully.")
|
||||
|
||||
def update_qdrant_dataset(self, dataset: Dataset):
|
||||
logging.info(f"update_qdrant_dataset {dataset.id}")
|
||||
|
||||
segment = db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
DocumentSegment.status == 'completed',
|
||||
DocumentSegment.enabled == True
|
||||
).first()
|
||||
|
||||
if segment:
|
||||
try:
|
||||
exist = self.text_exists(segment.index_node_id)
|
||||
if exist:
|
||||
index_struct = {
|
||||
"type": 'qdrant',
|
||||
"vector_store": {"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct)
|
||||
db.session.commit()
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
logging.info(f"Dataset {dataset.id} recreate successfully.")
|
||||
|
Loading…
Reference in New Issue
Block a user