mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-11-30 02:08:37 +08:00
refactor: remove unused codes, move core/agent module into dataset retrieval feature (#2614)
This commit is contained in:
parent
d44b05a9e5
commit
dd961985f0
@ -1,49 +0,0 @@
|
||||
from typing import cast
|
||||
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.model_runtime.entities.message_entities import PromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
|
||||
|
||||
class CalcTokenMixin:
|
||||
|
||||
def get_message_rest_tokens(self, model_config: ModelConfigEntity, messages: list[PromptMessage], **kwargs) -> int:
|
||||
"""
|
||||
Got the rest tokens available for the model after excluding messages tokens and completion max tokens
|
||||
|
||||
:param model_config:
|
||||
:param messages:
|
||||
:return:
|
||||
"""
|
||||
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
|
||||
max_tokens = 0
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if (parameter_rule.name == 'max_tokens'
|
||||
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
|
||||
max_tokens = (model_config.parameters.get(parameter_rule.name)
|
||||
or model_config.parameters.get(parameter_rule.use_template)) or 0
|
||||
|
||||
if model_context_tokens is None:
|
||||
return 0
|
||||
|
||||
if max_tokens is None:
|
||||
max_tokens = 0
|
||||
|
||||
prompt_tokens = model_type_instance.get_num_tokens(
|
||||
model_config.model,
|
||||
model_config.credentials,
|
||||
messages
|
||||
)
|
||||
|
||||
rest_tokens = model_context_tokens - max_tokens - prompt_tokens
|
||||
|
||||
return rest_tokens
|
||||
|
||||
|
||||
class ExceededLLMTokensLimitError(Exception):
|
||||
pass
|
@ -1,361 +0,0 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
|
||||
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
|
||||
from langchain.memory.prompt import SUMMARY_PROMPT
|
||||
from langchain.prompts.chat import BaseMessagePromptTemplate
|
||||
from langchain.schema import (
|
||||
AgentAction,
|
||||
AgentFinish,
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
get_buffer_string,
|
||||
)
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.entities.message_entities import lc_messages_to_prompt_messages
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
|
||||
|
||||
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_model_config: ModelConfigEntity = None
|
||||
model_config: ModelConfigEntity
|
||||
agent_llm_callback: Optional[AgentLLMCallback] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@root_validator
|
||||
def validate_llm(cls, values: dict) -> dict:
|
||||
return values
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
model_config: ModelConfigEntity,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
extra_prompt_messages: Optional[list[BaseMessagePromptTemplate]] = None,
|
||||
system_message: Optional[SystemMessage] = SystemMessage(
|
||||
content="You are a helpful AI assistant."
|
||||
),
|
||||
agent_llm_callback: Optional[AgentLLMCallback] = None,
|
||||
**kwargs: Any,
|
||||
) -> BaseSingleActionAgent:
|
||||
prompt = cls.create_prompt(
|
||||
extra_prompt_messages=extra_prompt_messages,
|
||||
system_message=system_message,
|
||||
)
|
||||
return cls(
|
||||
model_config=model_config,
|
||||
llm=FakeLLM(response=''),
|
||||
prompt=prompt,
|
||||
tools=tools,
|
||||
callback_manager=callback_manager,
|
||||
agent_llm_callback=agent_llm_callback,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
original_max_tokens = 0
|
||||
for parameter_rule in self.model_config.model_schema.parameter_rules:
|
||||
if (parameter_rule.name == 'max_tokens'
|
||||
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
|
||||
original_max_tokens = (self.model_config.parameters.get(parameter_rule.name)
|
||||
or self.model_config.parameters.get(parameter_rule.use_template)) or 0
|
||||
|
||||
self.model_config.parameters['max_tokens'] = 40
|
||||
|
||||
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
|
||||
messages = prompt.to_messages()
|
||||
|
||||
try:
|
||||
prompt_messages = lc_messages_to_prompt_messages(messages)
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=self.model_config.provider_model_bundle,
|
||||
model=self.model_config.model,
|
||||
)
|
||||
|
||||
tools = []
|
||||
for function in self.functions:
|
||||
tool = PromptMessageTool(
|
||||
**function
|
||||
)
|
||||
|
||||
tools.append(tool)
|
||||
|
||||
result = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
tools=tools,
|
||||
stream=False,
|
||||
model_parameters={
|
||||
'temperature': 0.2,
|
||||
'top_p': 0.3,
|
||||
'max_tokens': 1500
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
self.model_config.parameters['max_tokens'] = original_max_tokens
|
||||
|
||||
return True if result.message.tool_calls else False
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: list[tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date, along with observations
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
|
||||
selected_inputs = {
|
||||
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
|
||||
}
|
||||
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
|
||||
prompt = self.prompt.format_prompt(**full_inputs)
|
||||
messages = prompt.to_messages()
|
||||
|
||||
prompt_messages = lc_messages_to_prompt_messages(messages)
|
||||
|
||||
# summarize messages if rest_tokens < 0
|
||||
try:
|
||||
prompt_messages = self.summarize_messages_if_needed(prompt_messages, functions=self.functions)
|
||||
except ExceededLLMTokensLimitError as e:
|
||||
return AgentFinish(return_values={"output": str(e)}, log=str(e))
|
||||
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=self.model_config.provider_model_bundle,
|
||||
model=self.model_config.model,
|
||||
)
|
||||
|
||||
tools = []
|
||||
for function in self.functions:
|
||||
tool = PromptMessageTool(
|
||||
**function
|
||||
)
|
||||
|
||||
tools.append(tool)
|
||||
|
||||
result = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
tools=tools,
|
||||
stream=False,
|
||||
callbacks=[self.agent_llm_callback] if self.agent_llm_callback else [],
|
||||
model_parameters={
|
||||
'temperature': 0.2,
|
||||
'top_p': 0.3,
|
||||
'max_tokens': 1500
|
||||
}
|
||||
)
|
||||
|
||||
ai_message = AIMessage(
|
||||
content=result.message.content or "",
|
||||
additional_kwargs={
|
||||
'function_call': {
|
||||
'id': result.message.tool_calls[0].id,
|
||||
**result.message.tool_calls[0].function.dict()
|
||||
} if result.message.tool_calls else None
|
||||
}
|
||||
)
|
||||
agent_decision = _parse_ai_message(ai_message)
|
||||
|
||||
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
|
||||
tool_inputs = agent_decision.tool_input
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
|
||||
return agent_decision
|
||||
|
||||
@classmethod
|
||||
def get_system_message(cls):
|
||||
return SystemMessage(content="You are a helpful AI assistant.\n"
|
||||
"The current date or current time you know is wrong.\n"
|
||||
"Respond directly if appropriate.")
|
||||
|
||||
def return_stopped_response(
|
||||
self,
|
||||
early_stopping_method: str,
|
||||
intermediate_steps: list[tuple[AgentAction, str]],
|
||||
**kwargs: Any,
|
||||
) -> AgentFinish:
|
||||
try:
|
||||
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
|
||||
except ValueError:
|
||||
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
|
||||
|
||||
def summarize_messages_if_needed(self, messages: list[PromptMessage], **kwargs) -> list[PromptMessage]:
|
||||
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
|
||||
rest_tokens = self.get_message_rest_tokens(
|
||||
self.model_config,
|
||||
messages,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
|
||||
if rest_tokens >= 0:
|
||||
return messages
|
||||
|
||||
system_message = None
|
||||
human_message = None
|
||||
should_summary_messages = []
|
||||
for message in messages:
|
||||
if isinstance(message, SystemMessage):
|
||||
system_message = message
|
||||
elif isinstance(message, HumanMessage):
|
||||
human_message = message
|
||||
else:
|
||||
should_summary_messages.append(message)
|
||||
|
||||
if len(should_summary_messages) > 2:
|
||||
ai_message = should_summary_messages[-2]
|
||||
function_message = should_summary_messages[-1]
|
||||
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
|
||||
self.moving_summary_index = len(should_summary_messages)
|
||||
else:
|
||||
error_msg = "Exceeded LLM tokens limit, stopped."
|
||||
raise ExceededLLMTokensLimitError(error_msg)
|
||||
|
||||
new_messages = [system_message, human_message]
|
||||
|
||||
if self.moving_summary_index == 0:
|
||||
should_summary_messages.insert(0, human_message)
|
||||
|
||||
self.moving_summary_buffer = self.predict_new_summary(
|
||||
messages=should_summary_messages,
|
||||
existing_summary=self.moving_summary_buffer
|
||||
)
|
||||
|
||||
new_messages.append(AIMessage(content=self.moving_summary_buffer))
|
||||
new_messages.append(ai_message)
|
||||
new_messages.append(function_message)
|
||||
|
||||
return new_messages
|
||||
|
||||
def predict_new_summary(
|
||||
self, messages: list[BaseMessage], existing_summary: str
|
||||
) -> str:
|
||||
new_lines = get_buffer_string(
|
||||
messages,
|
||||
human_prefix="Human",
|
||||
ai_prefix="AI",
|
||||
)
|
||||
|
||||
chain = LLMChain(model_config=self.summary_model_config, prompt=SUMMARY_PROMPT)
|
||||
return chain.predict(summary=existing_summary, new_lines=new_lines)
|
||||
|
||||
def get_num_tokens_from_messages(self, model_config: ModelConfigEntity, messages: list[BaseMessage], **kwargs) -> int:
|
||||
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
if model_config.provider == 'azure_openai':
|
||||
model = model_config.model
|
||||
model = model.replace("gpt-35", "gpt-3.5")
|
||||
else:
|
||||
model = model_config.credentials.get("base_model_name")
|
||||
|
||||
tiktoken_ = _import_tiktoken()
|
||||
try:
|
||||
encoding = tiktoken_.encoding_for_model(model)
|
||||
except KeyError:
|
||||
model = "cl100k_base"
|
||||
encoding = tiktoken_.get_encoding(model)
|
||||
|
||||
if model.startswith("gpt-3.5-turbo"):
|
||||
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
||||
tokens_per_message = 4
|
||||
# if there's a name, the role is omitted
|
||||
tokens_per_name = -1
|
||||
elif model.startswith("gpt-4"):
|
||||
tokens_per_message = 3
|
||||
tokens_per_name = 1
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"get_num_tokens_from_messages() is not presently implemented "
|
||||
f"for model {model}."
|
||||
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
|
||||
"information on how messages are converted to tokens."
|
||||
)
|
||||
num_tokens = 0
|
||||
for m in messages:
|
||||
message = _convert_message_to_dict(m)
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
if key == "function_call":
|
||||
for f_key, f_value in value.items():
|
||||
num_tokens += len(encoding.encode(f_key))
|
||||
num_tokens += len(encoding.encode(f_value))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(value))
|
||||
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
# every reply is primed with <im_start>assistant
|
||||
num_tokens += 3
|
||||
|
||||
if kwargs.get('functions'):
|
||||
for function in kwargs.get('functions'):
|
||||
num_tokens += len(encoding.encode('name'))
|
||||
num_tokens += len(encoding.encode(function.get("name")))
|
||||
num_tokens += len(encoding.encode('description'))
|
||||
num_tokens += len(encoding.encode(function.get("description")))
|
||||
parameters = function.get("parameters")
|
||||
num_tokens += len(encoding.encode('parameters'))
|
||||
if 'title' in parameters:
|
||||
num_tokens += len(encoding.encode('title'))
|
||||
num_tokens += len(encoding.encode(parameters.get("title")))
|
||||
num_tokens += len(encoding.encode('type'))
|
||||
num_tokens += len(encoding.encode(parameters.get("type")))
|
||||
if 'properties' in parameters:
|
||||
num_tokens += len(encoding.encode('properties'))
|
||||
for key, value in parameters.get('properties').items():
|
||||
num_tokens += len(encoding.encode(key))
|
||||
for field_key, field_value in value.items():
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
if field_key == 'enum':
|
||||
for enum_field in field_value:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(enum_field))
|
||||
else:
|
||||
num_tokens += len(encoding.encode(field_key))
|
||||
num_tokens += len(encoding.encode(str(field_value)))
|
||||
if 'required' in parameters:
|
||||
num_tokens += len(encoding.encode('required'))
|
||||
for required_field in parameters['required']:
|
||||
num_tokens += 3
|
||||
num_tokens += len(encoding.encode(required_field))
|
||||
|
||||
return num_tokens
|
@ -1,306 +0,0 @@
|
||||
import re
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Optional, Union, cast
|
||||
|
||||
from langchain import BasePromptTemplate, PromptTemplate
|
||||
from langchain.agents import Agent, AgentOutputParser, StructuredChatAgent
|
||||
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
|
||||
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.prompt import SUMMARY_PROMPT
|
||||
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
|
||||
from langchain.schema import (
|
||||
AgentAction,
|
||||
AgentFinish,
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
HumanMessage,
|
||||
OutputParserException,
|
||||
get_buffer_string,
|
||||
)
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.entities.message_entities import lc_messages_to_prompt_messages
|
||||
|
||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
|
||||
Valid "action" values: "Final Answer" or {tool_names}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{{{{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $INPUT
|
||||
}}}}
|
||||
```
|
||||
|
||||
Follow this format:
|
||||
|
||||
Question: input question to answer
|
||||
Thought: consider previous and subsequent steps
|
||||
Action:
|
||||
```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: action result
|
||||
... (repeat Thought/Action/Observation N times)
|
||||
Thought: I know what to respond
|
||||
Action:
|
||||
```
|
||||
{{{{
|
||||
"action": "Final Answer",
|
||||
"action_input": "Final response to human"
|
||||
}}}}
|
||||
```"""
|
||||
|
||||
|
||||
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
|
||||
moving_summary_buffer: str = ""
|
||||
moving_summary_index: int = 0
|
||||
summary_model_config: ModelConfigEntity = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def should_use_agent(self, query: str):
|
||||
"""
|
||||
return should use agent
|
||||
Using the ReACT mode to determine whether an agent is needed is costly,
|
||||
so it's better to just use an Agent for reasoning, which is cheaper.
|
||||
|
||||
:param query:
|
||||
:return:
|
||||
"""
|
||||
return True
|
||||
|
||||
def plan(
|
||||
self,
|
||||
intermediate_steps: list[tuple[AgentAction, str]],
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> Union[AgentAction, AgentFinish]:
|
||||
"""Given input, decided what to do.
|
||||
|
||||
Args:
|
||||
intermediate_steps: Steps the LLM has taken to date,
|
||||
along with observatons
|
||||
callbacks: Callbacks to run.
|
||||
**kwargs: User inputs.
|
||||
|
||||
Returns:
|
||||
Action specifying what tool to use.
|
||||
"""
|
||||
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
||||
prompts, _ = self.llm_chain.prep_prompts(input_list=[self.llm_chain.prep_inputs(full_inputs)])
|
||||
|
||||
messages = []
|
||||
if prompts:
|
||||
messages = prompts[0].to_messages()
|
||||
|
||||
prompt_messages = lc_messages_to_prompt_messages(messages)
|
||||
|
||||
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_config, prompt_messages)
|
||||
if rest_tokens < 0:
|
||||
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
|
||||
|
||||
try:
|
||||
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
try:
|
||||
agent_decision = self.output_parser.parse(full_output)
|
||||
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
|
||||
tool_inputs = agent_decision.tool_input
|
||||
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
|
||||
tool_inputs['query'] = kwargs['input']
|
||||
agent_decision.tool_input = tool_inputs
|
||||
return agent_decision
|
||||
except OutputParserException:
|
||||
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
|
||||
"I don't know how to respond to that."}, "")
|
||||
|
||||
def summarize_messages(self, intermediate_steps: list[tuple[AgentAction, str]], **kwargs):
|
||||
if len(intermediate_steps) >= 2 and self.summary_model_config:
|
||||
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
|
||||
should_summary_messages = [AIMessage(content=observation)
|
||||
for _, observation in should_summary_intermediate_steps]
|
||||
if self.moving_summary_index == 0:
|
||||
should_summary_messages.insert(0, HumanMessage(content=kwargs.get("input")))
|
||||
|
||||
self.moving_summary_index = len(intermediate_steps)
|
||||
else:
|
||||
error_msg = "Exceeded LLM tokens limit, stopped."
|
||||
raise ExceededLLMTokensLimitError(error_msg)
|
||||
|
||||
if self.moving_summary_buffer and 'chat_history' in kwargs:
|
||||
kwargs["chat_history"].pop()
|
||||
|
||||
self.moving_summary_buffer = self.predict_new_summary(
|
||||
messages=should_summary_messages,
|
||||
existing_summary=self.moving_summary_buffer
|
||||
)
|
||||
|
||||
if 'chat_history' in kwargs:
|
||||
kwargs["chat_history"].append(AIMessage(content=self.moving_summary_buffer))
|
||||
|
||||
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
|
||||
|
||||
def predict_new_summary(
|
||||
self, messages: list[BaseMessage], existing_summary: str
|
||||
) -> str:
|
||||
new_lines = get_buffer_string(
|
||||
messages,
|
||||
human_prefix="Human",
|
||||
ai_prefix="AI",
|
||||
)
|
||||
|
||||
chain = LLMChain(model_config=self.summary_model_config, prompt=SUMMARY_PROMPT)
|
||||
return chain.predict(summary=existing_summary, new_lines=new_lines)
|
||||
|
||||
@classmethod
|
||||
def create_prompt(
|
||||
cls,
|
||||
tools: Sequence[BaseTool],
|
||||
prefix: str = PREFIX,
|
||||
suffix: str = SUFFIX,
|
||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[list[str]] = None,
|
||||
memory_prompts: Optional[list[BasePromptTemplate]] = None,
|
||||
) -> BasePromptTemplate:
|
||||
tool_strings = []
|
||||
for tool in tools:
|
||||
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
|
||||
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
|
||||
formatted_tools = "\n".join(tool_strings)
|
||||
tool_names = ", ".join([('"' + tool.name + '"') for tool in tools])
|
||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
||||
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
|
||||
if input_variables is None:
|
||||
input_variables = ["input", "agent_scratchpad"]
|
||||
_memory_prompts = memory_prompts or []
|
||||
messages = [
|
||||
SystemMessagePromptTemplate.from_template(template),
|
||||
*_memory_prompts,
|
||||
HumanMessagePromptTemplate.from_template(human_message_template),
|
||||
]
|
||||
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
|
||||
|
||||
@classmethod
|
||||
def create_completion_prompt(
|
||||
cls,
|
||||
tools: Sequence[BaseTool],
|
||||
prefix: str = PREFIX,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[list[str]] = None,
|
||||
) -> PromptTemplate:
|
||||
"""Create prompt in the style of the zero shot agent.
|
||||
|
||||
Args:
|
||||
tools: List of tools the agent will have access to, used to format the
|
||||
prompt.
|
||||
prefix: String to put before the list of tools.
|
||||
input_variables: List of input variables the final prompt will expect.
|
||||
|
||||
Returns:
|
||||
A PromptTemplate with the template assembled from the pieces here.
|
||||
"""
|
||||
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||
Question: {input}
|
||||
Thought: {agent_scratchpad}
|
||||
"""
|
||||
|
||||
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
|
||||
tool_names = ", ".join([tool.name for tool in tools])
|
||||
format_instructions = format_instructions.format(tool_names=tool_names)
|
||||
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
|
||||
if input_variables is None:
|
||||
input_variables = ["input", "agent_scratchpad"]
|
||||
return PromptTemplate(template=template, input_variables=input_variables)
|
||||
|
||||
def _construct_scratchpad(
|
||||
self, intermediate_steps: list[tuple[AgentAction, str]]
|
||||
) -> str:
|
||||
agent_scratchpad = ""
|
||||
for action, observation in intermediate_steps:
|
||||
agent_scratchpad += action.log
|
||||
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
|
||||
|
||||
if not isinstance(agent_scratchpad, str):
|
||||
raise ValueError("agent_scratchpad should be of type string.")
|
||||
if agent_scratchpad:
|
||||
llm_chain = cast(LLMChain, self.llm_chain)
|
||||
if llm_chain.model_config.mode == "chat":
|
||||
return (
|
||||
f"This was your previous work "
|
||||
f"(but I haven't seen any of it! I only see what "
|
||||
f"you return as final answer):\n{agent_scratchpad}"
|
||||
)
|
||||
else:
|
||||
return agent_scratchpad
|
||||
else:
|
||||
return agent_scratchpad
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
model_config: ModelConfigEntity,
|
||||
tools: Sequence[BaseTool],
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
output_parser: Optional[AgentOutputParser] = None,
|
||||
prefix: str = PREFIX,
|
||||
suffix: str = SUFFIX,
|
||||
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
|
||||
format_instructions: str = FORMAT_INSTRUCTIONS,
|
||||
input_variables: Optional[list[str]] = None,
|
||||
memory_prompts: Optional[list[BasePromptTemplate]] = None,
|
||||
agent_llm_callback: Optional[AgentLLMCallback] = None,
|
||||
**kwargs: Any,
|
||||
) -> Agent:
|
||||
"""Construct an agent from an LLM and tools."""
|
||||
cls._validate_tools(tools)
|
||||
if model_config.mode == "chat":
|
||||
prompt = cls.create_prompt(
|
||||
tools,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
human_message_template=human_message_template,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
memory_prompts=memory_prompts,
|
||||
)
|
||||
else:
|
||||
prompt = cls.create_completion_prompt(
|
||||
tools,
|
||||
prefix=prefix,
|
||||
format_instructions=format_instructions,
|
||||
input_variables=input_variables,
|
||||
)
|
||||
llm_chain = LLMChain(
|
||||
model_config=model_config,
|
||||
prompt=prompt,
|
||||
callback_manager=callback_manager,
|
||||
agent_llm_callback=agent_llm_callback,
|
||||
parameters={
|
||||
'temperature': 0.2,
|
||||
'top_p': 0.3,
|
||||
'max_tokens': 1500
|
||||
}
|
||||
)
|
||||
tool_names = [tool.name for tool in tools]
|
||||
_output_parser = output_parser
|
||||
return cls(
|
||||
llm_chain=llm_chain,
|
||||
allowed_tools=tool_names,
|
||||
output_parser=_output_parser,
|
||||
**kwargs,
|
||||
)
|
@ -1,4 +1,3 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
@ -15,7 +14,7 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
|
||||
from core.moderation.base import ModerationException
|
||||
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message, MessageAgentThought, MessageChain
|
||||
from models.model import App, Conversation, Message, MessageAgentThought
|
||||
from models.tools import ToolConversationVariables
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -173,11 +172,6 @@ class AssistantApplicationRunner(AppRunner):
|
||||
|
||||
# convert db variables to tool variables
|
||||
tool_variables = self._convert_db_variables_to_tool_variables(tool_conversation_variables)
|
||||
|
||||
message_chain = self._init_message_chain(
|
||||
message=message,
|
||||
query=query
|
||||
)
|
||||
|
||||
# init model instance
|
||||
model_instance = ModelInstance(
|
||||
@ -290,38 +284,6 @@ class AssistantApplicationRunner(AppRunner):
|
||||
'pool': db_variables.variables
|
||||
})
|
||||
|
||||
def _init_message_chain(self, message: Message, query: str) -> MessageChain:
|
||||
"""
|
||||
Init MessageChain
|
||||
:param message: message
|
||||
:param query: query
|
||||
:return:
|
||||
"""
|
||||
message_chain = MessageChain(
|
||||
message_id=message.id,
|
||||
type="AgentExecutor",
|
||||
input=json.dumps({
|
||||
"input": query
|
||||
})
|
||||
)
|
||||
|
||||
db.session.add(message_chain)
|
||||
db.session.commit()
|
||||
|
||||
return message_chain
|
||||
|
||||
def _save_message_chain(self, message_chain: MessageChain, output_text: str) -> None:
|
||||
"""
|
||||
Save MessageChain
|
||||
:param message_chain: message chain
|
||||
:param output_text: output text
|
||||
:return:
|
||||
"""
|
||||
message_chain.output = json.dumps({
|
||||
"output": output_text
|
||||
})
|
||||
db.session.commit()
|
||||
|
||||
def _get_usage_of_all_agent_thoughts(self, model_config: ModelConfigEntity,
|
||||
message: Message) -> LLMUsage:
|
||||
"""
|
||||
|
@ -5,7 +5,7 @@ from core.app_runner.app_runner import AppRunner
|
||||
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.application_entities import ApplicationGenerateEntity, DatasetEntity, InvokeFrom, ModelConfigEntity
|
||||
from core.features.dataset_retrieval import DatasetRetrievalFeature
|
||||
from core.features.dataset_retrieval.dataset_retrieval import DatasetRetrievalFeature
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.moderation.base import ModerationException
|
||||
|
8
api/core/entities/agent_entities.py
Normal file
8
api/core/entities/agent_entities.py
Normal file
@ -0,0 +1,8 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class PlanningStrategy(Enum):
|
||||
ROUTER = 'router'
|
||||
REACT_ROUTER = 'react_router'
|
||||
REACT = 'react'
|
||||
FUNCTION_CALL = 'function_call'
|
@ -1,199 +0,0 @@
|
||||
import logging
|
||||
from typing import Optional, cast
|
||||
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
|
||||
from core.application_queue_manager import ApplicationQueueManager
|
||||
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
||||
from core.entities.application_entities import (
|
||||
AgentEntity,
|
||||
AppOrchestrationConfigEntity,
|
||||
InvokeFrom,
|
||||
ModelConfigEntity,
|
||||
)
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers import model_provider_factory
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentRunnerFeature:
|
||||
def __init__(self, tenant_id: str,
|
||||
app_orchestration_config: AppOrchestrationConfigEntity,
|
||||
model_config: ModelConfigEntity,
|
||||
config: AgentEntity,
|
||||
queue_manager: ApplicationQueueManager,
|
||||
message: Message,
|
||||
user_id: str,
|
||||
agent_llm_callback: AgentLLMCallback,
|
||||
callback: AgentLoopGatherCallbackHandler,
|
||||
memory: Optional[TokenBufferMemory] = None,) -> None:
|
||||
"""
|
||||
Agent runner
|
||||
:param tenant_id: tenant id
|
||||
:param app_orchestration_config: app orchestration config
|
||||
:param model_config: model config
|
||||
:param config: dataset config
|
||||
:param queue_manager: queue manager
|
||||
:param message: message
|
||||
:param user_id: user id
|
||||
:param agent_llm_callback: agent llm callback
|
||||
:param callback: callback
|
||||
:param memory: memory
|
||||
"""
|
||||
self.tenant_id = tenant_id
|
||||
self.app_orchestration_config = app_orchestration_config
|
||||
self.model_config = model_config
|
||||
self.config = config
|
||||
self.queue_manager = queue_manager
|
||||
self.message = message
|
||||
self.user_id = user_id
|
||||
self.agent_llm_callback = agent_llm_callback
|
||||
self.callback = callback
|
||||
self.memory = memory
|
||||
|
||||
def run(self, query: str,
|
||||
invoke_from: InvokeFrom) -> Optional[str]:
|
||||
"""
|
||||
Retrieve agent loop result.
|
||||
:param query: query
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
provider = self.config.provider
|
||||
model = self.config.model
|
||||
tool_configs = self.config.tools
|
||||
|
||||
# check model is support tool calling
|
||||
provider_instance = model_provider_factory.get_provider_instance(provider=provider)
|
||||
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
|
||||
# get model schema
|
||||
model_schema = model_type_instance.get_model_schema(
|
||||
model=model,
|
||||
credentials=self.model_config.credentials
|
||||
)
|
||||
|
||||
if not model_schema:
|
||||
return None
|
||||
|
||||
planning_strategy = PlanningStrategy.REACT
|
||||
features = model_schema.features
|
||||
if features:
|
||||
if ModelFeature.TOOL_CALL in features \
|
||||
or ModelFeature.MULTI_TOOL_CALL in features:
|
||||
planning_strategy = PlanningStrategy.FUNCTION_CALL
|
||||
|
||||
tools = self.to_tools(
|
||||
tool_configs=tool_configs,
|
||||
invoke_from=invoke_from,
|
||||
callbacks=[self.callback, DifyStdOutCallbackHandler()],
|
||||
)
|
||||
|
||||
if len(tools) == 0:
|
||||
return None
|
||||
|
||||
agent_configuration = AgentConfiguration(
|
||||
strategy=planning_strategy,
|
||||
model_config=self.model_config,
|
||||
tools=tools,
|
||||
memory=self.memory,
|
||||
max_iterations=10,
|
||||
max_execution_time=400.0,
|
||||
early_stopping_method="generate",
|
||||
agent_llm_callback=self.agent_llm_callback,
|
||||
callbacks=[self.callback, DifyStdOutCallbackHandler()]
|
||||
)
|
||||
|
||||
agent_executor = AgentExecutor(agent_configuration)
|
||||
|
||||
try:
|
||||
# check if should use agent
|
||||
should_use_agent = agent_executor.should_use_agent(query)
|
||||
if not should_use_agent:
|
||||
return None
|
||||
|
||||
result = agent_executor.run(query)
|
||||
return result.output
|
||||
except Exception as ex:
|
||||
logger.exception("agent_executor run failed")
|
||||
return None
|
||||
|
||||
def to_dataset_retriever_tool(self, tool_config: dict,
|
||||
invoke_from: InvokeFrom) \
|
||||
-> Optional[BaseTool]:
|
||||
"""
|
||||
A dataset tool is a tool that can be used to retrieve information from a dataset
|
||||
:param tool_config: tool config
|
||||
:param invoke_from: invoke from
|
||||
"""
|
||||
show_retrieve_source = self.app_orchestration_config.show_retrieve_source
|
||||
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager=self.queue_manager,
|
||||
app_id=self.message.app_id,
|
||||
message_id=self.message.id,
|
||||
user_id=self.user_id,
|
||||
invoke_from=invoke_from
|
||||
)
|
||||
|
||||
# get dataset from dataset id
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.tenant_id == self.tenant_id,
|
||||
Dataset.id == tool_config.get("id")
|
||||
).first()
|
||||
|
||||
# pass if dataset is not available
|
||||
if not dataset:
|
||||
return None
|
||||
|
||||
# pass if dataset is not available
|
||||
if (dataset and dataset.available_document_count == 0
|
||||
and dataset.available_document_count == 0):
|
||||
return None
|
||||
|
||||
# get retrieval model config
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
'reranking_model_name': ''
|
||||
},
|
||||
'top_k': 2,
|
||||
'score_threshold_enabled': False
|
||||
}
|
||||
|
||||
retrieval_model_config = dataset.retrieval_model \
|
||||
if dataset.retrieval_model else default_retrieval_model
|
||||
|
||||
# get top k
|
||||
top_k = retrieval_model_config['top_k']
|
||||
|
||||
# get score threshold
|
||||
score_threshold = None
|
||||
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
||||
if score_threshold_enabled:
|
||||
score_threshold = retrieval_model_config.get("score_threshold")
|
||||
|
||||
tool = DatasetRetrieverTool.from_dataset(
|
||||
dataset=dataset,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
hit_callbacks=[hit_callback],
|
||||
return_resource=show_retrieve_source,
|
||||
retriever_from=invoke_from.to_source()
|
||||
)
|
||||
|
||||
return tool
|
@ -5,11 +5,11 @@ from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.schema import Generation, LLMResult
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.entities.message_entities import lc_messages_to_prompt_messages
|
||||
from core.features.dataset_retrieval.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.features.dataset_retrieval.agent.fake_llm import FakeLLM
|
||||
from core.model_manager import ModelInstance
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
|
||||
|
||||
class LLMChain(LCLLMChain):
|
@ -12,9 +12,9 @@ from pydantic import root_validator
|
||||
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.entities.message_entities import lc_messages_to_prompt_messages
|
||||
from core.features.dataset_retrieval.agent.fake_llm import FakeLLM
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import PromptMessageTool
|
||||
from core.third_party.langchain.llms.fake import FakeLLM
|
||||
|
||||
|
||||
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
|
@ -12,8 +12,8 @@ from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, Sy
|
||||
from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.features.dataset_retrieval.agent.llm_chain import LLMChain
|
||||
|
||||
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
|
@ -1,4 +1,3 @@
|
||||
import enum
|
||||
import logging
|
||||
from typing import Optional, Union
|
||||
|
||||
@ -8,14 +7,13 @@ from langchain.callbacks.manager import Callbacks
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import BaseModel, Extra
|
||||
|
||||
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
|
||||
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
|
||||
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
|
||||
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
|
||||
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.entities.message_entities import prompt_messages_to_lc_messages
|
||||
from core.features.dataset_retrieval.agent.agent_llm_callback import AgentLLMCallback
|
||||
from core.features.dataset_retrieval.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
|
||||
from core.features.dataset_retrieval.agent.output_parser.structured_chat import StructuredChatOutputParser
|
||||
from core.features.dataset_retrieval.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
|
||||
from core.helper import moderation
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
@ -23,13 +21,6 @@ from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import Datas
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
|
||||
class PlanningStrategy(str, enum.Enum):
|
||||
ROUTER = 'router'
|
||||
REACT_ROUTER = 'react_router'
|
||||
REACT = 'react'
|
||||
FUNCTION_CALL = 'function_call'
|
||||
|
||||
|
||||
class AgentConfiguration(BaseModel):
|
||||
strategy: PlanningStrategy
|
||||
model_config: ModelConfigEntity
|
||||
@ -62,28 +53,7 @@ class AgentExecutor:
|
||||
self.agent = self._init_agent()
|
||||
|
||||
def _init_agent(self) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]:
|
||||
if self.configuration.strategy == PlanningStrategy.REACT:
|
||||
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
|
||||
model_config=self.configuration.model_config,
|
||||
tools=self.configuration.tools,
|
||||
output_parser=StructuredChatOutputParser(),
|
||||
summary_model_config=self.configuration.summary_model_config
|
||||
if self.configuration.summary_model_config else None,
|
||||
agent_llm_callback=self.configuration.agent_llm_callback,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
|
||||
model_config=self.configuration.model_config,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=prompt_messages_to_lc_messages(self.configuration.memory.get_history_prompt_messages())
|
||||
if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_model_config=self.configuration.summary_model_config
|
||||
if self.configuration.summary_model_config else None,
|
||||
agent_llm_callback=self.configuration.agent_llm_callback,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.ROUTER:
|
||||
if self.configuration.strategy == PlanningStrategy.ROUTER:
|
||||
self.configuration.tools = [t for t in self.configuration.tools
|
||||
if isinstance(t, DatasetRetrieverTool)
|
||||
or isinstance(t, DatasetMultiRetrieverTool)]
|
@ -2,9 +2,10 @@ from typing import Optional, cast
|
||||
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from core.entities.application_entities import DatasetEntity, DatasetRetrieveConfigEntity, InvokeFrom, ModelConfigEntity
|
||||
from core.features.dataset_retrieval.agent_based_dataset_executor import AgentConfiguration, AgentExecutor
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
189
api/core/third_party/spark/spark_llm.py
vendored
189
api/core/third_party/spark/spark_llm.py
vendored
@ -1,189 +0,0 @@
|
||||
import base64
|
||||
import hashlib
|
||||
import hmac
|
||||
import json
|
||||
import queue
|
||||
import ssl
|
||||
from datetime import datetime
|
||||
from time import mktime
|
||||
from typing import Optional
|
||||
from urllib.parse import urlencode, urlparse
|
||||
from wsgiref.handlers import format_date_time
|
||||
|
||||
import websocket
|
||||
|
||||
|
||||
class SparkLLMClient:
|
||||
def __init__(self, model_name: str, app_id: str, api_key: str, api_secret: str, api_domain: Optional[str] = None):
|
||||
domain = 'spark-api.xf-yun.com'
|
||||
endpoint = 'chat'
|
||||
if api_domain:
|
||||
domain = api_domain
|
||||
if model_name == 'spark-v3':
|
||||
endpoint = 'multimodal'
|
||||
|
||||
model_api_configs = {
|
||||
'spark': {
|
||||
'version': 'v1.1',
|
||||
'chat_domain': 'general'
|
||||
},
|
||||
'spark-v2': {
|
||||
'version': 'v2.1',
|
||||
'chat_domain': 'generalv2'
|
||||
},
|
||||
'spark-v3': {
|
||||
'version': 'v3.1',
|
||||
'chat_domain': 'generalv3'
|
||||
},
|
||||
'spark-v3.5': {
|
||||
'version': 'v3.5',
|
||||
'chat_domain': 'generalv3.5'
|
||||
}
|
||||
}
|
||||
|
||||
api_version = model_api_configs[model_name]['version']
|
||||
|
||||
self.chat_domain = model_api_configs[model_name]['chat_domain']
|
||||
self.api_base = f"wss://{domain}/{api_version}/{endpoint}"
|
||||
self.app_id = app_id
|
||||
self.ws_url = self.create_url(
|
||||
urlparse(self.api_base).netloc,
|
||||
urlparse(self.api_base).path,
|
||||
self.api_base,
|
||||
api_key,
|
||||
api_secret
|
||||
)
|
||||
|
||||
self.queue = queue.Queue()
|
||||
self.blocking_message = ''
|
||||
|
||||
def create_url(self, host: str, path: str, api_base: str, api_key: str, api_secret: str) -> str:
|
||||
# generate timestamp by RFC1123
|
||||
now = datetime.now()
|
||||
date = format_date_time(mktime(now.timetuple()))
|
||||
|
||||
signature_origin = "host: " + host + "\n"
|
||||
signature_origin += "date: " + date + "\n"
|
||||
signature_origin += "GET " + path + " HTTP/1.1"
|
||||
|
||||
# encrypt using hmac-sha256
|
||||
signature_sha = hmac.new(api_secret.encode('utf-8'), signature_origin.encode('utf-8'),
|
||||
digestmod=hashlib.sha256).digest()
|
||||
|
||||
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')
|
||||
|
||||
authorization_origin = f'api_key="{api_key}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'
|
||||
|
||||
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
|
||||
|
||||
v = {
|
||||
"authorization": authorization,
|
||||
"date": date,
|
||||
"host": host
|
||||
}
|
||||
# generate url
|
||||
url = api_base + '?' + urlencode(v)
|
||||
return url
|
||||
|
||||
def run(self, messages: list, user_id: str,
|
||||
model_kwargs: Optional[dict] = None, streaming: bool = False):
|
||||
websocket.enableTrace(False)
|
||||
ws = websocket.WebSocketApp(
|
||||
self.ws_url,
|
||||
on_message=self.on_message,
|
||||
on_error=self.on_error,
|
||||
on_close=self.on_close,
|
||||
on_open=self.on_open
|
||||
)
|
||||
ws.messages = messages
|
||||
ws.user_id = user_id
|
||||
ws.model_kwargs = model_kwargs
|
||||
ws.streaming = streaming
|
||||
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
|
||||
|
||||
def on_error(self, ws, error):
|
||||
self.queue.put({
|
||||
'status_code': error.status_code,
|
||||
'error': error.resp_body.decode('utf-8')
|
||||
})
|
||||
ws.close()
|
||||
|
||||
def on_close(self, ws, close_status_code, close_reason):
|
||||
self.queue.put({'done': True})
|
||||
|
||||
def on_open(self, ws):
|
||||
self.blocking_message = ''
|
||||
data = json.dumps(self.gen_params(
|
||||
messages=ws.messages,
|
||||
user_id=ws.user_id,
|
||||
model_kwargs=ws.model_kwargs
|
||||
))
|
||||
ws.send(data)
|
||||
|
||||
def on_message(self, ws, message):
|
||||
data = json.loads(message)
|
||||
code = data['header']['code']
|
||||
if code != 0:
|
||||
self.queue.put({
|
||||
'status_code': 400,
|
||||
'error': f"Code: {code}, Error: {data['header']['message']}"
|
||||
})
|
||||
ws.close()
|
||||
else:
|
||||
choices = data["payload"]["choices"]
|
||||
status = choices["status"]
|
||||
content = choices["text"][0]["content"]
|
||||
if ws.streaming:
|
||||
self.queue.put({'data': content})
|
||||
else:
|
||||
self.blocking_message += content
|
||||
|
||||
if status == 2:
|
||||
if not ws.streaming:
|
||||
self.queue.put({'data': self.blocking_message})
|
||||
ws.close()
|
||||
|
||||
def gen_params(self, messages: list, user_id: str,
|
||||
model_kwargs: Optional[dict] = None) -> dict:
|
||||
data = {
|
||||
"header": {
|
||||
"app_id": self.app_id,
|
||||
"uid": user_id
|
||||
},
|
||||
"parameter": {
|
||||
"chat": {
|
||||
"domain": self.chat_domain
|
||||
}
|
||||
},
|
||||
"payload": {
|
||||
"message": {
|
||||
"text": messages
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if model_kwargs:
|
||||
data['parameter']['chat'].update(model_kwargs)
|
||||
|
||||
return data
|
||||
|
||||
def subscribe(self):
|
||||
while True:
|
||||
content = self.queue.get()
|
||||
if 'error' in content:
|
||||
if content['status_code'] == 401:
|
||||
raise SparkError('[Spark] The credentials you provided are incorrect. '
|
||||
'Please double-check and fill them in again.')
|
||||
elif content['status_code'] == 403:
|
||||
raise SparkError("[Spark] Sorry, the credentials you provided are access denied. "
|
||||
"Please try again after obtaining the necessary permissions.")
|
||||
else:
|
||||
raise SparkError(f"[Spark] code: {content['status_code']}, error: {content['error']}")
|
||||
|
||||
if 'data' not in content:
|
||||
break
|
||||
yield content
|
||||
|
||||
|
||||
class SparkError(Exception):
|
||||
pass
|
@ -1,24 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class DatetimeToolInput(BaseModel):
|
||||
type: str = Field(..., description="Type for current time, must be: datetime.")
|
||||
|
||||
|
||||
class DatetimeTool(BaseTool):
|
||||
"""Tool for querying current datetime."""
|
||||
name: str = "current_datetime"
|
||||
args_schema: type[BaseModel] = DatetimeToolInput
|
||||
description: str = "A tool when you want to get the current date, time, week, month or year, " \
|
||||
"and the time zone is UTC. Result is \"<date> <time> <timezone> <week>\"."
|
||||
|
||||
def _run(self, type: str) -> str:
|
||||
# get current time
|
||||
current_time = datetime.utcnow()
|
||||
return current_time.strftime("%Y-%m-%d %H:%M:%S UTC+0000 %A")
|
||||
|
||||
async def _arun(self, tool_input: str) -> str:
|
||||
raise NotImplementedError()
|
@ -1,63 +0,0 @@
|
||||
import base64
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from extensions.ext_database import db
|
||||
from libs import rsa
|
||||
from models.account import Tenant
|
||||
from models.tool import ToolProvider, ToolProviderName
|
||||
|
||||
|
||||
class BaseToolProvider(ABC):
|
||||
def __init__(self, tenant_id: str):
|
||||
self.tenant_id = tenant_id
|
||||
|
||||
@abstractmethod
|
||||
def get_provider_name(self) -> ToolProviderName:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def encrypt_credentials(self, credentials: dict) -> Optional[dict]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_credentials(self, obfuscated: bool = False) -> Optional[dict]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def credentials_to_func_kwargs(self) -> Optional[dict]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def credentials_validate(self, credentials: dict):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_provider(self, must_enabled: bool = False) -> Optional[ToolProvider]:
|
||||
"""
|
||||
Returns the Provider instance for the given tenant_id and tool_name.
|
||||
"""
|
||||
query = db.session.query(ToolProvider).filter(
|
||||
ToolProvider.tenant_id == self.tenant_id,
|
||||
ToolProvider.tool_name == self.get_provider_name().value
|
||||
)
|
||||
|
||||
if must_enabled:
|
||||
query = query.filter(ToolProvider.is_enabled == True)
|
||||
|
||||
return query.first()
|
||||
|
||||
def encrypt_token(self, token) -> str:
|
||||
tenant = db.session.query(Tenant).filter(Tenant.id == self.tenant_id).first()
|
||||
encrypted_token = rsa.encrypt(token, tenant.encrypt_public_key)
|
||||
return base64.b64encode(encrypted_token).decode()
|
||||
|
||||
def decrypt_token(self, token: str, obfuscated: bool = False) -> str:
|
||||
token = rsa.decrypt(base64.b64decode(token), self.tenant_id)
|
||||
|
||||
if obfuscated:
|
||||
return self._obfuscated_token(token)
|
||||
|
||||
return token
|
||||
|
||||
def _obfuscated_token(self, token: str) -> str:
|
||||
return token[:6] + '*' * (len(token) - 8) + token[-2:]
|
@ -1,2 +0,0 @@
|
||||
class ToolValidateFailedError(Exception):
|
||||
description = "Tool Provider Validate failed"
|
@ -1,77 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.tool.provider.base import BaseToolProvider
|
||||
from core.tool.provider.errors import ToolValidateFailedError
|
||||
from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper
|
||||
from models.tool import ToolProviderName
|
||||
|
||||
|
||||
class SerpAPIToolProvider(BaseToolProvider):
|
||||
def get_provider_name(self) -> ToolProviderName:
|
||||
"""
|
||||
Returns the name of the provider.
|
||||
|
||||
:return:
|
||||
"""
|
||||
return ToolProviderName.SERPAPI
|
||||
|
||||
def get_credentials(self, obfuscated: bool = False) -> Optional[dict]:
|
||||
"""
|
||||
Returns the credentials for SerpAPI as a dictionary.
|
||||
|
||||
:param obfuscated: obfuscate credentials if True
|
||||
:return:
|
||||
"""
|
||||
tool_provider = self.get_provider(must_enabled=True)
|
||||
if not tool_provider:
|
||||
return None
|
||||
|
||||
credentials = tool_provider.credentials
|
||||
if not credentials:
|
||||
return None
|
||||
|
||||
if credentials.get('api_key'):
|
||||
credentials['api_key'] = self.decrypt_token(credentials.get('api_key'), obfuscated)
|
||||
|
||||
return credentials
|
||||
|
||||
def credentials_to_func_kwargs(self) -> Optional[dict]:
|
||||
"""
|
||||
Returns the credentials function kwargs as a dictionary.
|
||||
|
||||
:return:
|
||||
"""
|
||||
credentials = self.get_credentials()
|
||||
if not credentials:
|
||||
return None
|
||||
|
||||
return {
|
||||
'serpapi_api_key': credentials.get('api_key')
|
||||
}
|
||||
|
||||
def credentials_validate(self, credentials: dict):
|
||||
"""
|
||||
Validates the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:return:
|
||||
"""
|
||||
if 'api_key' not in credentials or not credentials.get('api_key'):
|
||||
raise ToolValidateFailedError("SerpAPI api_key is required.")
|
||||
|
||||
api_key = credentials.get('api_key')
|
||||
|
||||
try:
|
||||
OptimizedSerpAPIWrapper(serpapi_api_key=api_key).run(query='test')
|
||||
except Exception as e:
|
||||
raise ToolValidateFailedError("SerpAPI api_key is invalid. {}".format(e))
|
||||
|
||||
def encrypt_credentials(self, credentials: dict) -> Optional[dict]:
|
||||
"""
|
||||
Encrypts the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:return:
|
||||
"""
|
||||
credentials['api_key'] = self.encrypt_token(credentials.get('api_key'))
|
||||
return credentials
|
@ -1,43 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.tool.provider.base import BaseToolProvider
|
||||
from core.tool.provider.serpapi_provider import SerpAPIToolProvider
|
||||
|
||||
|
||||
class ToolProviderService:
|
||||
|
||||
def __init__(self, tenant_id: str, provider_name: str):
|
||||
self.provider = self._init_provider(tenant_id, provider_name)
|
||||
|
||||
def _init_provider(self, tenant_id: str, provider_name: str) -> BaseToolProvider:
|
||||
if provider_name == 'serpapi':
|
||||
return SerpAPIToolProvider(tenant_id)
|
||||
else:
|
||||
raise Exception('tool provider {} not found'.format(provider_name))
|
||||
|
||||
def get_credentials(self, obfuscated: bool = False) -> Optional[dict]:
|
||||
"""
|
||||
Returns the credentials for Tool as a dictionary.
|
||||
|
||||
:param obfuscated:
|
||||
:return:
|
||||
"""
|
||||
return self.provider.get_credentials(obfuscated)
|
||||
|
||||
def credentials_validate(self, credentials: dict):
|
||||
"""
|
||||
Validates the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:raises: ValidateFailedError
|
||||
"""
|
||||
return self.provider.credentials_validate(credentials)
|
||||
|
||||
def encrypt_credentials(self, credentials: dict):
|
||||
"""
|
||||
Encrypts the given credentials.
|
||||
|
||||
:param credentials:
|
||||
:return:
|
||||
"""
|
||||
return self.provider.encrypt_credentials(credentials)
|
@ -1,51 +0,0 @@
|
||||
from langchain import SerpAPIWrapper
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class OptimizedSerpAPIInput(BaseModel):
|
||||
query: str = Field(..., description="search query.")
|
||||
|
||||
|
||||
class OptimizedSerpAPIWrapper(SerpAPIWrapper):
|
||||
|
||||
@staticmethod
|
||||
def _process_response(res: dict, num_results: int = 5) -> str:
|
||||
"""Process response from SerpAPI."""
|
||||
if "error" in res.keys():
|
||||
raise ValueError(f"Got error from SerpAPI: {res['error']}")
|
||||
if "answer_box" in res.keys() and type(res["answer_box"]) == list:
|
||||
res["answer_box"] = res["answer_box"][0]
|
||||
if "answer_box" in res.keys() and "answer" in res["answer_box"].keys():
|
||||
toret = res["answer_box"]["answer"]
|
||||
elif "answer_box" in res.keys() and "snippet" in res["answer_box"].keys():
|
||||
toret = res["answer_box"]["snippet"]
|
||||
elif (
|
||||
"answer_box" in res.keys()
|
||||
and "snippet_highlighted_words" in res["answer_box"].keys()
|
||||
):
|
||||
toret = res["answer_box"]["snippet_highlighted_words"][0]
|
||||
elif (
|
||||
"sports_results" in res.keys()
|
||||
and "game_spotlight" in res["sports_results"].keys()
|
||||
):
|
||||
toret = res["sports_results"]["game_spotlight"]
|
||||
elif (
|
||||
"shopping_results" in res.keys()
|
||||
and "title" in res["shopping_results"][0].keys()
|
||||
):
|
||||
toret = res["shopping_results"][:3]
|
||||
elif (
|
||||
"knowledge_graph" in res.keys()
|
||||
and "description" in res["knowledge_graph"].keys()
|
||||
):
|
||||
toret = res["knowledge_graph"]["description"]
|
||||
elif 'organic_results' in res.keys() and len(res['organic_results']) > 0:
|
||||
toret = ""
|
||||
for result in res["organic_results"][:num_results]:
|
||||
if "link" in result:
|
||||
toret += "----------------\nlink: " + result["link"] + "\n"
|
||||
if "snippet" in result:
|
||||
toret += "snippet: " + result["snippet"] + "\n"
|
||||
else:
|
||||
toret = "No good search result found"
|
||||
return "search result:\n" + toret
|
@ -1,443 +0,0 @@
|
||||
import hashlib
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import site
|
||||
import subprocess
|
||||
import tempfile
|
||||
import unicodedata
|
||||
from contextlib import contextmanager
|
||||
from typing import Any
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup, CData, Comment, NavigableString
|
||||
from langchain.chains import RefineDocumentsChain
|
||||
from langchain.chains.summarize import refine_prompts
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.tools.base import BaseTool
|
||||
from newspaper import Article
|
||||
from pydantic import BaseModel, Field
|
||||
from regex import regex
|
||||
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.rag.extractor import extract_processor
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.models.document import Document
|
||||
|
||||
FULL_TEMPLATE = """
|
||||
TITLE: {title}
|
||||
AUTHORS: {authors}
|
||||
PUBLISH DATE: {publish_date}
|
||||
TOP_IMAGE_URL: {top_image}
|
||||
TEXT:
|
||||
|
||||
{text}
|
||||
"""
|
||||
|
||||
|
||||
class WebReaderToolInput(BaseModel):
|
||||
url: str = Field(..., description="URL of the website to read")
|
||||
summary: bool = Field(
|
||||
default=False,
|
||||
description="When the user's question requires extracting the summarizing content of the webpage, "
|
||||
"set it to true."
|
||||
)
|
||||
cursor: int = Field(
|
||||
default=0,
|
||||
description="Start reading from this character."
|
||||
"Use when the first response was truncated"
|
||||
"and you want to continue reading the page."
|
||||
"The value cannot exceed 24000.",
|
||||
)
|
||||
|
||||
|
||||
class WebReaderTool(BaseTool):
|
||||
"""Reader tool for getting website title and contents. Gives more control than SimpleReaderTool."""
|
||||
|
||||
name: str = "web_reader"
|
||||
args_schema: type[BaseModel] = WebReaderToolInput
|
||||
description: str = "use this to read a website. " \
|
||||
"If you can answer the question based on the information provided, " \
|
||||
"there is no need to use."
|
||||
page_contents: str = None
|
||||
url: str = None
|
||||
max_chunk_length: int = 4000
|
||||
summary_chunk_tokens: int = 4000
|
||||
summary_chunk_overlap: int = 0
|
||||
summary_separators: list[str] = ["\n\n", "。", ".", " ", ""]
|
||||
continue_reading: bool = True
|
||||
model_config: ModelConfigEntity
|
||||
model_parameters: dict[str, Any]
|
||||
|
||||
def _run(self, url: str, summary: bool = False, cursor: int = 0) -> str:
|
||||
try:
|
||||
if not self.page_contents or self.url != url:
|
||||
page_contents = get_url(url)
|
||||
self.page_contents = page_contents
|
||||
self.url = url
|
||||
else:
|
||||
page_contents = self.page_contents
|
||||
except Exception as e:
|
||||
return f'Read this website failed, caused by: {str(e)}.'
|
||||
|
||||
if summary:
|
||||
character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
||||
chunk_size=self.summary_chunk_tokens,
|
||||
chunk_overlap=self.summary_chunk_overlap,
|
||||
separators=self.summary_separators
|
||||
)
|
||||
|
||||
texts = character_splitter.split_text(page_contents)
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
|
||||
if len(docs) == 0 or docs[0].page_content.endswith('TEXT:'):
|
||||
return "No content found."
|
||||
|
||||
# only use first 5 docs
|
||||
if len(docs) > 5:
|
||||
docs = docs[:5]
|
||||
|
||||
chain = self.get_summary_chain()
|
||||
try:
|
||||
page_contents = chain.run(docs)
|
||||
except Exception as e:
|
||||
return f'Read this website failed, caused by: {str(e)}.'
|
||||
else:
|
||||
page_contents = page_result(page_contents, cursor, self.max_chunk_length)
|
||||
|
||||
if self.continue_reading and len(page_contents) >= self.max_chunk_length:
|
||||
page_contents += f"\nPAGE WAS TRUNCATED. IF YOU FIND INFORMATION THAT CAN ANSWER QUESTION " \
|
||||
f"THEN DIRECT ANSWER AND STOP INVOKING web_reader TOOL, OTHERWISE USE " \
|
||||
f"CURSOR={cursor+len(page_contents)} TO CONTINUE READING."
|
||||
|
||||
return page_contents
|
||||
|
||||
async def _arun(self, url: str) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
def get_summary_chain(self) -> RefineDocumentsChain:
|
||||
initial_chain = LLMChain(
|
||||
model_config=self.model_config,
|
||||
prompt=refine_prompts.PROMPT,
|
||||
parameters=self.model_parameters
|
||||
)
|
||||
refine_chain = LLMChain(
|
||||
model_config=self.model_config,
|
||||
prompt=refine_prompts.REFINE_PROMPT,
|
||||
parameters=self.model_parameters
|
||||
)
|
||||
return RefineDocumentsChain(
|
||||
initial_llm_chain=initial_chain,
|
||||
refine_llm_chain=refine_chain,
|
||||
document_variable_name="text",
|
||||
initial_response_name="existing_answer",
|
||||
callbacks=self.callbacks
|
||||
)
|
||||
|
||||
|
||||
def page_result(text: str, cursor: int, max_length: int) -> str:
|
||||
"""Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
|
||||
return text[cursor: cursor + max_length]
|
||||
|
||||
|
||||
def get_url(url: str) -> str:
|
||||
"""Fetch URL and return the contents as a string."""
|
||||
headers = {
|
||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
||||
}
|
||||
supported_content_types = extract_processor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
|
||||
|
||||
head_response = requests.head(url, headers=headers, allow_redirects=True, timeout=(5, 10))
|
||||
|
||||
if head_response.status_code != 200:
|
||||
return "URL returned status code {}.".format(head_response.status_code)
|
||||
|
||||
# check content-type
|
||||
main_content_type = head_response.headers.get('Content-Type').split(';')[0].strip()
|
||||
if main_content_type not in supported_content_types:
|
||||
return "Unsupported content-type [{}] of URL.".format(main_content_type)
|
||||
|
||||
if main_content_type in extract_processor.SUPPORT_URL_CONTENT_TYPES:
|
||||
return ExtractProcessor.load_from_url(url, return_text=True)
|
||||
|
||||
response = requests.get(url, headers=headers, allow_redirects=True, timeout=(5, 30))
|
||||
a = extract_using_readabilipy(response.text)
|
||||
|
||||
if not a['plain_text'] or not a['plain_text'].strip():
|
||||
return get_url_from_newspaper3k(url)
|
||||
|
||||
res = FULL_TEMPLATE.format(
|
||||
title=a['title'],
|
||||
authors=a['byline'],
|
||||
publish_date=a['date'],
|
||||
top_image="",
|
||||
text=a['plain_text'] if a['plain_text'] else "",
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def get_url_from_newspaper3k(url: str) -> str:
|
||||
|
||||
a = Article(url)
|
||||
a.download()
|
||||
a.parse()
|
||||
|
||||
res = FULL_TEMPLATE.format(
|
||||
title=a.title,
|
||||
authors=a.authors,
|
||||
publish_date=a.publish_date,
|
||||
top_image=a.top_image,
|
||||
text=a.text,
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def extract_using_readabilipy(html):
|
||||
with tempfile.NamedTemporaryFile(delete=False, mode='w+') as f_html:
|
||||
f_html.write(html)
|
||||
f_html.close()
|
||||
html_path = f_html.name
|
||||
|
||||
# Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
|
||||
article_json_path = html_path + ".json"
|
||||
jsdir = os.path.join(find_module_path('readabilipy'), 'javascript')
|
||||
with chdir(jsdir):
|
||||
subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
|
||||
|
||||
# Read output of call to Readability.parse() from JSON file and return as Python dictionary
|
||||
with open(article_json_path, encoding="utf-8") as json_file:
|
||||
input_json = json.loads(json_file.read())
|
||||
|
||||
# Deleting files after processing
|
||||
os.unlink(article_json_path)
|
||||
os.unlink(html_path)
|
||||
|
||||
article_json = {
|
||||
"title": None,
|
||||
"byline": None,
|
||||
"date": None,
|
||||
"content": None,
|
||||
"plain_content": None,
|
||||
"plain_text": None
|
||||
}
|
||||
# Populate article fields from readability fields where present
|
||||
if input_json:
|
||||
if "title" in input_json and input_json["title"]:
|
||||
article_json["title"] = input_json["title"]
|
||||
if "byline" in input_json and input_json["byline"]:
|
||||
article_json["byline"] = input_json["byline"]
|
||||
if "date" in input_json and input_json["date"]:
|
||||
article_json["date"] = input_json["date"]
|
||||
if "content" in input_json and input_json["content"]:
|
||||
article_json["content"] = input_json["content"]
|
||||
article_json["plain_content"] = plain_content(article_json["content"], False, False)
|
||||
article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
|
||||
if "textContent" in input_json and input_json["textContent"]:
|
||||
article_json["plain_text"] = input_json["textContent"]
|
||||
article_json["plain_text"] = re.sub(r'\n\s*\n', '\n', article_json["plain_text"])
|
||||
|
||||
return article_json
|
||||
|
||||
|
||||
def find_module_path(module_name):
|
||||
for package_path in site.getsitepackages():
|
||||
potential_path = os.path.join(package_path, module_name)
|
||||
if os.path.exists(potential_path):
|
||||
return potential_path
|
||||
|
||||
return None
|
||||
|
||||
@contextmanager
|
||||
def chdir(path):
|
||||
"""Change directory in context and return to original on exit"""
|
||||
# From https://stackoverflow.com/a/37996581, couldn't find a built-in
|
||||
original_path = os.getcwd()
|
||||
os.chdir(path)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
os.chdir(original_path)
|
||||
|
||||
|
||||
def extract_text_blocks_as_plain_text(paragraph_html):
|
||||
# Load article as DOM
|
||||
soup = BeautifulSoup(paragraph_html, 'html.parser')
|
||||
# Select all lists
|
||||
list_elements = soup.find_all(['ul', 'ol'])
|
||||
# Prefix text in all list items with "* " and make lists paragraphs
|
||||
for list_element in list_elements:
|
||||
plain_items = "".join(list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all('li')])))
|
||||
list_element.string = plain_items
|
||||
list_element.name = "p"
|
||||
# Select all text blocks
|
||||
text_blocks = [s.parent for s in soup.find_all(string=True)]
|
||||
text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
|
||||
# Drop empty paragraphs
|
||||
text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
|
||||
return text_blocks
|
||||
|
||||
|
||||
def plain_text_leaf_node(element):
|
||||
# Extract all text, stripped of any child HTML elements and normalise it
|
||||
plain_text = normalise_text(element.get_text())
|
||||
if plain_text != "" and element.name == "li":
|
||||
plain_text = "* {}, ".format(plain_text)
|
||||
if plain_text == "":
|
||||
plain_text = None
|
||||
if "data-node-index" in element.attrs:
|
||||
plain = {"node_index": element["data-node-index"], "text": plain_text}
|
||||
else:
|
||||
plain = {"text": plain_text}
|
||||
return plain
|
||||
|
||||
|
||||
def plain_content(readability_content, content_digests, node_indexes):
|
||||
# Load article as DOM
|
||||
soup = BeautifulSoup(readability_content, 'html.parser')
|
||||
# Make all elements plain
|
||||
elements = plain_elements(soup.contents, content_digests, node_indexes)
|
||||
if node_indexes:
|
||||
# Add node index attributes to nodes
|
||||
elements = [add_node_indexes(element) for element in elements]
|
||||
# Replace article contents with plain elements
|
||||
soup.contents = elements
|
||||
return str(soup)
|
||||
|
||||
|
||||
def plain_elements(elements, content_digests, node_indexes):
|
||||
# Get plain content versions of all elements
|
||||
elements = [plain_element(element, content_digests, node_indexes)
|
||||
for element in elements]
|
||||
if content_digests:
|
||||
# Add content digest attribute to nodes
|
||||
elements = [add_content_digest(element) for element in elements]
|
||||
return elements
|
||||
|
||||
|
||||
def plain_element(element, content_digests, node_indexes):
|
||||
# For lists, we make each item plain text
|
||||
if is_leaf(element):
|
||||
# For leaf node elements, extract the text content, discarding any HTML tags
|
||||
# 1. Get element contents as text
|
||||
plain_text = element.get_text()
|
||||
# 2. Normalise the extracted text string to a canonical representation
|
||||
plain_text = normalise_text(plain_text)
|
||||
# 3. Update element content to be plain text
|
||||
element.string = plain_text
|
||||
elif is_text(element):
|
||||
if is_non_printing(element):
|
||||
# The simplified HTML may have come from Readability.js so might
|
||||
# have non-printing text (e.g. Comment or CData). In this case, we
|
||||
# keep the structure, but ensure that the string is empty.
|
||||
element = type(element)("")
|
||||
else:
|
||||
plain_text = element.string
|
||||
plain_text = normalise_text(plain_text)
|
||||
element = type(element)(plain_text)
|
||||
else:
|
||||
# If not a leaf node or leaf type call recursively on child nodes, replacing
|
||||
element.contents = plain_elements(element.contents, content_digests, node_indexes)
|
||||
return element
|
||||
|
||||
|
||||
def add_node_indexes(element, node_index="0"):
|
||||
# Can't add attributes to string types
|
||||
if is_text(element):
|
||||
return element
|
||||
# Add index to current element
|
||||
element["data-node-index"] = node_index
|
||||
# Add index to child elements
|
||||
for local_idx, child in enumerate(
|
||||
[c for c in element.contents if not is_text(c)], start=1):
|
||||
# Can't add attributes to leaf string types
|
||||
child_index = "{stem}.{local}".format(
|
||||
stem=node_index, local=local_idx)
|
||||
add_node_indexes(child, node_index=child_index)
|
||||
return element
|
||||
|
||||
|
||||
def normalise_text(text):
|
||||
"""Normalise unicode and whitespace."""
|
||||
# Normalise unicode first to try and standardise whitespace characters as much as possible before normalising them
|
||||
text = strip_control_characters(text)
|
||||
text = normalise_unicode(text)
|
||||
text = normalise_whitespace(text)
|
||||
return text
|
||||
|
||||
|
||||
def strip_control_characters(text):
|
||||
"""Strip out unicode control characters which might break the parsing."""
|
||||
# Unicode control characters
|
||||
# [Cc]: Other, Control [includes new lines]
|
||||
# [Cf]: Other, Format
|
||||
# [Cn]: Other, Not Assigned
|
||||
# [Co]: Other, Private Use
|
||||
# [Cs]: Other, Surrogate
|
||||
control_chars = set(['Cc', 'Cf', 'Cn', 'Co', 'Cs'])
|
||||
retained_chars = ['\t', '\n', '\r', '\f']
|
||||
|
||||
# Remove non-printing control characters
|
||||
return "".join(["" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char for char in text])
|
||||
|
||||
|
||||
def normalise_unicode(text):
|
||||
"""Normalise unicode such that things that are visually equivalent map to the same unicode string where possible."""
|
||||
normal_form = "NFKC"
|
||||
text = unicodedata.normalize(normal_form, text)
|
||||
return text
|
||||
|
||||
|
||||
def normalise_whitespace(text):
|
||||
"""Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
|
||||
text = regex.sub(r"\s+", " ", text)
|
||||
# Remove leading and trailing whitespace
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
def is_leaf(element):
|
||||
return (element.name in ['p', 'li'])
|
||||
|
||||
|
||||
def is_text(element):
|
||||
return isinstance(element, NavigableString)
|
||||
|
||||
|
||||
def is_non_printing(element):
|
||||
return any(isinstance(element, _e) for _e in [Comment, CData])
|
||||
|
||||
|
||||
def add_content_digest(element):
|
||||
if not is_text(element):
|
||||
element["data-content-digest"] = content_digest(element)
|
||||
return element
|
||||
|
||||
|
||||
def content_digest(element):
|
||||
if is_text(element):
|
||||
# Hash
|
||||
trimmed_string = element.string.strip()
|
||||
if trimmed_string == "":
|
||||
digest = ""
|
||||
else:
|
||||
digest = hashlib.sha256(trimmed_string.encode('utf-8')).hexdigest()
|
||||
else:
|
||||
contents = element.contents
|
||||
num_contents = len(contents)
|
||||
if num_contents == 0:
|
||||
# No hash when no child elements exist
|
||||
digest = ""
|
||||
elif num_contents == 1:
|
||||
# If single child, use digest of child
|
||||
digest = content_digest(contents[0])
|
||||
else:
|
||||
# Build content digest from the "non-empty" digests of child nodes
|
||||
digest = hashlib.sha256()
|
||||
child_digests = list(
|
||||
filter(lambda x: x != "", [content_digest(content) for content in contents]))
|
||||
for child in child_digests:
|
||||
digest.update(child.encode('utf-8'))
|
||||
digest = digest.hexdigest()
|
||||
return digest
|
@ -4,7 +4,7 @@ from langchain.tools import BaseTool
|
||||
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.application_entities import DatasetRetrieveConfigEntity, InvokeFrom
|
||||
from core.features.dataset_retrieval import DatasetRetrievalFeature
|
||||
from core.features.dataset_retrieval.dataset_retrieval import DatasetRetrievalFeature
|
||||
from core.tools.entities.common_entities import I18nObject
|
||||
from core.tools.entities.tool_entities import ToolDescription, ToolIdentity, ToolInvokeMessage, ToolParameter
|
||||
from core.tools.tool.tool import Tool
|
||||
@ -15,12 +15,12 @@ class DatasetRetrieverTool(Tool):
|
||||
|
||||
@staticmethod
|
||||
def get_dataset_tools(tenant_id: str,
|
||||
dataset_ids: list[str],
|
||||
retrieve_config: DatasetRetrieveConfigEntity,
|
||||
return_resource: bool,
|
||||
invoke_from: InvokeFrom,
|
||||
hit_callback: DatasetIndexToolCallbackHandler
|
||||
) -> list['DatasetRetrieverTool']:
|
||||
dataset_ids: list[str],
|
||||
retrieve_config: DatasetRetrieveConfigEntity,
|
||||
return_resource: bool,
|
||||
invoke_from: InvokeFrom,
|
||||
hit_callback: DatasetIndexToolCallbackHandler
|
||||
) -> list['DatasetRetrieverTool']:
|
||||
"""
|
||||
get dataset tool
|
||||
"""
|
||||
@ -46,7 +46,7 @@ class DatasetRetrieverTool(Tool):
|
||||
)
|
||||
# restore retrieve strategy
|
||||
retrieve_config.retrieve_strategy = original_retriever_mode
|
||||
|
||||
|
||||
# convert langchain tools to Tools
|
||||
tools = []
|
||||
for langchain_tool in langchain_tools:
|
||||
@ -60,7 +60,7 @@ class DatasetRetrieverTool(Tool):
|
||||
llm=langchain_tool.description),
|
||||
runtime=DatasetRetrieverTool.Runtime()
|
||||
)
|
||||
|
||||
|
||||
tools.append(tool)
|
||||
|
||||
return tools
|
||||
@ -68,13 +68,13 @@ class DatasetRetrieverTool(Tool):
|
||||
def get_runtime_parameters(self) -> list[ToolParameter]:
|
||||
return [
|
||||
ToolParameter(name='query',
|
||||
label=I18nObject(en_US='', zh_Hans=''),
|
||||
human_description=I18nObject(en_US='', zh_Hans=''),
|
||||
type=ToolParameter.ToolParameterType.STRING,
|
||||
form=ToolParameter.ToolParameterForm.LLM,
|
||||
llm_description='Query for the dataset to be used to retrieve the dataset.',
|
||||
required=True,
|
||||
default=''),
|
||||
label=I18nObject(en_US='', zh_Hans=''),
|
||||
human_description=I18nObject(en_US='', zh_Hans=''),
|
||||
type=ToolParameter.ToolParameterType.STRING,
|
||||
form=ToolParameter.ToolParameterForm.LLM,
|
||||
llm_description='Query for the dataset to be used to retrieve the dataset.',
|
||||
required=True,
|
||||
default=''),
|
||||
]
|
||||
|
||||
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage | list[ToolInvokeMessage]:
|
||||
@ -84,7 +84,7 @@ class DatasetRetrieverTool(Tool):
|
||||
query = tool_parameters.get('query', None)
|
||||
if not query:
|
||||
return self.create_text_message(text='please input query')
|
||||
|
||||
|
||||
# invoke dataset retriever tool
|
||||
result = self.langchain_tool._run(query=query)
|
||||
|
||||
@ -94,4 +94,4 @@ class DatasetRetrieverTool(Tool):
|
||||
"""
|
||||
validate the credentials for dataset retriever tool
|
||||
"""
|
||||
pass
|
||||
pass
|
||||
|
@ -7,23 +7,14 @@ import subprocess
|
||||
import tempfile
|
||||
import unicodedata
|
||||
from contextlib import contextmanager
|
||||
from typing import Any
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup, CData, Comment, NavigableString
|
||||
from langchain.chains import RefineDocumentsChain
|
||||
from langchain.chains.summarize import refine_prompts
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.tools.base import BaseTool
|
||||
from newspaper import Article
|
||||
from pydantic import BaseModel, Field
|
||||
from regex import regex
|
||||
|
||||
from core.chain.llm_chain import LLMChain
|
||||
from core.entities.application_entities import ModelConfigEntity
|
||||
from core.rag.extractor import extract_processor
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.models.document import Document
|
||||
|
||||
FULL_TEMPLATE = """
|
||||
TITLE: {title}
|
||||
@ -36,106 +27,6 @@ TEXT:
|
||||
"""
|
||||
|
||||
|
||||
class WebReaderToolInput(BaseModel):
|
||||
url: str = Field(..., description="URL of the website to read")
|
||||
summary: bool = Field(
|
||||
default=False,
|
||||
description="When the user's question requires extracting the summarizing content of the webpage, "
|
||||
"set it to true."
|
||||
)
|
||||
cursor: int = Field(
|
||||
default=0,
|
||||
description="Start reading from this character."
|
||||
"Use when the first response was truncated"
|
||||
"and you want to continue reading the page."
|
||||
"The value cannot exceed 24000.",
|
||||
)
|
||||
|
||||
|
||||
class WebReaderTool(BaseTool):
|
||||
"""Reader tool for getting website title and contents. Gives more control than SimpleReaderTool."""
|
||||
|
||||
name: str = "web_reader"
|
||||
args_schema: type[BaseModel] = WebReaderToolInput
|
||||
description: str = "use this to read a website. " \
|
||||
"If you can answer the question based on the information provided, " \
|
||||
"there is no need to use."
|
||||
page_contents: str = None
|
||||
url: str = None
|
||||
max_chunk_length: int = 4000
|
||||
summary_chunk_tokens: int = 4000
|
||||
summary_chunk_overlap: int = 0
|
||||
summary_separators: list[str] = ["\n\n", "。", ".", " ", ""]
|
||||
continue_reading: bool = True
|
||||
model_config: ModelConfigEntity
|
||||
model_parameters: dict[str, Any]
|
||||
|
||||
def _run(self, url: str, summary: bool = False, cursor: int = 0) -> str:
|
||||
try:
|
||||
if not self.page_contents or self.url != url:
|
||||
page_contents = get_url(url)
|
||||
self.page_contents = page_contents
|
||||
self.url = url
|
||||
else:
|
||||
page_contents = self.page_contents
|
||||
except Exception as e:
|
||||
return f'Read this website failed, caused by: {str(e)}.'
|
||||
|
||||
if summary:
|
||||
character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
||||
chunk_size=self.summary_chunk_tokens,
|
||||
chunk_overlap=self.summary_chunk_overlap,
|
||||
separators=self.summary_separators
|
||||
)
|
||||
|
||||
texts = character_splitter.split_text(page_contents)
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
|
||||
if len(docs) == 0 or docs[0].page_content.endswith('TEXT:'):
|
||||
return "No content found."
|
||||
|
||||
# only use first 5 docs
|
||||
if len(docs) > 5:
|
||||
docs = docs[:5]
|
||||
|
||||
chain = self.get_summary_chain()
|
||||
try:
|
||||
page_contents = chain.run(docs)
|
||||
except Exception as e:
|
||||
return f'Read this website failed, caused by: {str(e)}.'
|
||||
else:
|
||||
page_contents = page_result(page_contents, cursor, self.max_chunk_length)
|
||||
|
||||
if self.continue_reading and len(page_contents) >= self.max_chunk_length:
|
||||
page_contents += f"\nPAGE WAS TRUNCATED. IF YOU FIND INFORMATION THAT CAN ANSWER QUESTION " \
|
||||
f"THEN DIRECT ANSWER AND STOP INVOKING web_reader TOOL, OTHERWISE USE " \
|
||||
f"CURSOR={cursor+len(page_contents)} TO CONTINUE READING."
|
||||
|
||||
return page_contents
|
||||
|
||||
async def _arun(self, url: str) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
def get_summary_chain(self) -> RefineDocumentsChain:
|
||||
initial_chain = LLMChain(
|
||||
model_config=self.model_config,
|
||||
prompt=refine_prompts.PROMPT,
|
||||
parameters=self.model_parameters
|
||||
)
|
||||
refine_chain = LLMChain(
|
||||
model_config=self.model_config,
|
||||
prompt=refine_prompts.REFINE_PROMPT,
|
||||
parameters=self.model_parameters
|
||||
)
|
||||
return RefineDocumentsChain(
|
||||
initial_llm_chain=initial_chain,
|
||||
refine_llm_chain=refine_chain,
|
||||
document_variable_name="text",
|
||||
initial_response_name="existing_answer",
|
||||
callbacks=self.callbacks
|
||||
)
|
||||
|
||||
|
||||
def page_result(text: str, cursor: int, max_length: int) -> str:
|
||||
"""Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
|
||||
return text[cursor: cursor + max_length]
|
||||
|
@ -1,7 +1,7 @@
|
||||
import re
|
||||
import uuid
|
||||
|
||||
from core.agent.agent_executor import PlanningStrategy
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from core.external_data_tool.factory import ExternalDataToolFactory
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.model_providers import model_provider_factory
|
||||
|
Loading…
Reference in New Issue
Block a user