import json import os import re import enum from typing import List, Optional, Tuple from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage from core.model_providers.models.entity.model_params import ModelMode from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages from core.model_providers.models.llm.base import BaseLLM from core.model_providers.models.llm.baichuan_model import BaichuanModel from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel from core.model_providers.models.llm.openllm_model import OpenLLMModel from core.model_providers.models.llm.xinference_model import XinferenceModel from core.prompt.prompt_builder import PromptBuilder from core.prompt.prompt_template import PromptTemplateParser class AppMode(enum.Enum): COMPLETION = 'completion' CHAT = 'chat' class PromptTransform: def get_prompt(self, mode: str, pre_prompt: str, inputs: dict, query: str, context: Optional[str], memory: Optional[BaseChatMemory], model_instance: BaseLLM) -> \ Tuple[List[PromptMessage], Optional[List[str]]]: prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance)) prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance) return [PromptMessage(content=prompt)], stops def get_advanced_prompt(self, app_mode: str, app_model_config: str, inputs: dict, query: str, context: Optional[str], memory: Optional[BaseChatMemory], model_instance: BaseLLM) -> List[PromptMessage]: model_mode = app_model_config.model_dict['mode'] app_mode_enum = AppMode(app_mode) model_mode_enum = ModelMode(model_mode) prompt_messages = [] if app_mode_enum == AppMode.CHAT: if model_mode_enum == ModelMode.COMPLETION: prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance) elif model_mode_enum == ModelMode.CHAT: prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance) elif app_mode_enum == AppMode.COMPLETION: if model_mode_enum == ModelMode.CHAT: prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context) elif model_mode_enum == ModelMode.COMPLETION: prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context) return prompt_messages def _get_history_messages_from_memory(self, memory: BaseChatMemory, max_token_limit: int) -> str: """Get memory messages.""" memory.max_token_limit = max_token_limit memory_key = memory.memory_variables[0] external_context = memory.load_memory_variables({}) return external_context[memory_key] def _get_history_messages_list_from_memory(self, memory: BaseChatMemory, max_token_limit: int) -> List[PromptMessage]: """Get memory messages.""" memory.max_token_limit = max_token_limit memory.return_messages = True memory_key = memory.memory_variables[0] external_context = memory.load_memory_variables({}) memory.return_messages = False return to_prompt_messages(external_context[memory_key]) def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str: # baichuan if isinstance(model_instance, BaichuanModel): return self._prompt_file_name_for_baichuan(mode) baichuan_model_hosted_platforms = (HuggingfaceHubModel, OpenLLMModel, XinferenceModel) if isinstance(model_instance, baichuan_model_hosted_platforms) and 'baichuan' in model_instance.name.lower(): return self._prompt_file_name_for_baichuan(mode) # common if mode == 'completion': return 'common_completion' else: return 'common_chat' def _prompt_file_name_for_baichuan(self, mode: str) -> str: if mode == 'completion': return 'baichuan_completion' else: return 'baichuan_chat' def _read_prompt_rules_from_file(self, prompt_name: str) -> dict: # Get the absolute path of the subdirectory prompt_path = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'generate_prompts') json_file_path = os.path.join(prompt_path, f'{prompt_name}.json') # Open the JSON file and read its content with open(json_file_path, 'r') as json_file: return json.load(json_file) def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict, query: str, context: Optional[str], memory: Optional[BaseChatMemory], model_instance: BaseLLM) -> Tuple[str, Optional[list]]: context_prompt_content = '' if context and 'context_prompt' in prompt_rules: prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt']) context_prompt_content = prompt_template.format( {'context': context} ) pre_prompt_content = '' if pre_prompt: prompt_template = PromptTemplateParser(template=pre_prompt) prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} pre_prompt_content = prompt_template.format( prompt_inputs ) prompt = '' for order in prompt_rules['system_prompt_orders']: if order == 'context_prompt': prompt += context_prompt_content elif order == 'pre_prompt': prompt += pre_prompt_content query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}' if memory and 'histories_prompt' in prompt_rules: # append chat histories tmp_human_message = PromptBuilder.to_human_message( prompt_content=prompt + query_prompt, inputs={ 'query': query } ) rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance) memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human' memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant' histories = self._get_history_messages_from_memory(memory, rest_tokens) prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt']) histories_prompt_content = prompt_template.format({'histories': histories}) prompt = '' for order in prompt_rules['system_prompt_orders']: if order == 'context_prompt': prompt += context_prompt_content elif order == 'pre_prompt': prompt += (pre_prompt_content + '\n') if pre_prompt_content else '' elif order == 'histories_prompt': prompt += histories_prompt_content prompt_template = PromptTemplateParser(template=query_prompt) query_prompt_content = prompt_template.format({'query': query}) prompt += query_prompt_content prompt = re.sub(r'<\|.*?\|>', '', prompt) stops = prompt_rules.get('stops') if stops is not None and len(stops) == 0: stops = None return prompt, stops def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None: if '#context#' in prompt_template.variable_keys: if context: prompt_inputs['#context#'] = context else: prompt_inputs['#context#'] = '' def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None: if '#query#' in prompt_template.variable_keys: if query: prompt_inputs['#query#'] = query else: prompt_inputs['#query#'] = '' def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict, prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None: if '#histories#' in prompt_template.variable_keys: if memory: tmp_human_message = PromptBuilder.to_human_message( prompt_content=raw_prompt, inputs={ '#histories#': '', **prompt_inputs } ) rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance) memory.human_prefix = conversation_histories_role['user_prefix'] memory.ai_prefix = conversation_histories_role['assistant_prefix'] histories = self._get_history_messages_from_memory(memory, rest_tokens) prompt_inputs['#histories#'] = histories else: prompt_inputs['#histories#'] = '' def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None: if memory: rest_tokens = self._calculate_rest_token(prompt_messages, model_instance) memory.human_prefix = MessageType.USER.value memory.ai_prefix = MessageType.ASSISTANT.value histories = self._get_history_messages_list_from_memory(memory, rest_tokens) prompt_messages.extend(histories) def _calculate_rest_token(self, prompt_messages: BaseMessage, model_instance: BaseLLM) -> int: rest_tokens = 2000 if model_instance.model_rules.max_tokens.max: curr_message_tokens = model_instance.get_num_tokens(to_prompt_messages(prompt_messages)) max_tokens = model_instance.model_kwargs.max_tokens rest_tokens = model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens rest_tokens = max(rest_tokens, 0) return rest_tokens def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str: prompt = prompt_template.format( prompt_inputs ) prompt = re.sub(r'<\|.*?\|>', '', prompt) return prompt def _get_chat_app_completion_model_prompt_messages(self, app_model_config: str, inputs: dict, query: str, context: Optional[str], memory: Optional[BaseChatMemory], model_instance: BaseLLM) -> List[PromptMessage]: raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text'] conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role'] prompt_messages = [] prompt = '' prompt_template = PromptTemplateParser(template=raw_prompt) prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} self._set_context_variable(context, prompt_template, prompt_inputs) self._set_query_variable(query, prompt_template, prompt_inputs) self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance) prompt = self._format_prompt(prompt_template, prompt_inputs) prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt)) return prompt_messages def _get_chat_app_chat_model_prompt_messages(self, app_model_config: str, inputs: dict, query: str, context: Optional[str], memory: Optional[BaseChatMemory], model_instance: BaseLLM) -> List[PromptMessage]: raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt'] prompt_messages = [] for prompt_item in raw_prompt_list: raw_prompt = prompt_item['text'] prompt = '' prompt_template = PromptTemplateParser(template=raw_prompt) prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} self._set_context_variable(context, prompt_template, prompt_inputs) prompt = self._format_prompt(prompt_template, prompt_inputs) prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt)) self._append_chat_histories(memory, prompt_messages, model_instance) prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query)) return prompt_messages def _get_completion_app_completion_model_prompt_messages(self, app_model_config: str, inputs: dict, context: Optional[str]) -> List[PromptMessage]: raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text'] prompt_messages = [] prompt = '' prompt_template = PromptTemplateParser(template=raw_prompt) prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} self._set_context_variable(context, prompt_template, prompt_inputs) prompt = self._format_prompt(prompt_template, prompt_inputs) prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt)) return prompt_messages def _get_completion_app_chat_model_prompt_messages(self, app_model_config: str, inputs: dict, context: Optional[str]) -> List[PromptMessage]: raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt'] prompt_messages = [] for prompt_item in raw_prompt_list: raw_prompt = prompt_item['text'] prompt = '' prompt_template = PromptTemplateParser(template=raw_prompt) prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs} self._set_context_variable(context, prompt_template, prompt_inputs) prompt = self._format_prompt(prompt_template, prompt_inputs) prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt)) return prompt_messages