mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-11-30 10:18:13 +08:00
.. | ||
constants | ||
controllers | ||
core | ||
docker | ||
events | ||
extensions | ||
libs | ||
migrations | ||
models | ||
services | ||
tasks | ||
tests | ||
.dockerignore | ||
.env.example | ||
app.py | ||
commands.py | ||
config.py | ||
Dockerfile | ||
README.md | ||
requirements.txt |
Dify Backend API
Usage
-
Start the docker-compose stack
The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using
docker-compose
.cd ../docker docker-compose -f docker-compose.middleware.yaml up -d cd ../api
-
Copy
.env.example
to.env
-
Generate a
SECRET_KEY
in the.env
file.openssl rand -base64 42
3.5 If you use annaconda, create a new environment and activate it
conda create --name dify python=3.10
conda activate dify
-
Install dependencies
pip install -r requirements.txt
-
Run migrate
Before the first launch, migrate the database to the latest version.
flask db upgrade
-
Start backend:
flask run --host 0.0.0.0 --port=5001 --debug
-
Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
-
If you need to debug local async processing, you can run
celery -A app.celery worker -Q dataset,generation,mail
, celery can do dataset importing and other async tasks.