dify/api
2024-08-27 10:25:24 +08:00
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 2024-08-26 15:14:05 +08:00
.vscode chore: remove .idea and .vscode from root path (#7437) 2024-08-20 15:37:29 +08:00
configs chore: Update version to 0.7.2 (#7646) 2024-08-26 20:11:55 +08:00
constants chore(api): Introduce Ruff Formatter. (#7291) 2024-08-15 12:54:05 +08:00
contexts chore(api): Introduce Ruff Formatter. (#7291) 2024-08-15 12:54:05 +08:00
controllers catch openai rate limit error (#7658) 2024-08-26 19:36:44 +08:00
core fix dataset_id and index_node_id idx missed in document_segments tabl… (#7681) 2024-08-27 10:25:24 +08:00
docker fix: use LOG_LEVEL for celery startup (#7628) 2024-08-26 14:44:58 +08:00
events feat: custom app icon (#7196) 2024-08-19 09:16:33 +08:00
extensions fix(storage): 🐛 Create S3 bucket if it doesn't exist (#7514) 2024-08-22 09:45:42 +08:00
fields feat: Sort conversations by updated_at desc (#7348) 2024-08-20 17:55:44 +08:00
libs feat: custom app icon (#7196) 2024-08-19 09:16:33 +08:00
migrations chore(database): Rename table name from workflow__conversation_variables to workflow_conversation_variables. (#7432) 2024-08-20 14:34:03 +08:00
models Feat/7134 use dataset api create a dataset with permission (#7508) 2024-08-21 20:25:45 +08:00
schedule chore(api): Introduce Ruff Formatter. (#7291) 2024-08-15 12:54:05 +08:00
services catch openai rate limit error (#7658) 2024-08-26 19:36:44 +08:00
tasks chore(api/tasks): apply ruff reformatting (#7594) 2024-08-26 13:38:37 +08:00
templates feat: implement forgot password feature (#5534) 2024-07-05 13:38:51 +08:00
tests Add Azure AI Studio as provider (#7549) 2024-08-27 09:52:59 +08:00
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 2024-06-22 01:34:08 +08:00
.env.example Feat/7134 use dataset api create a dataset with permission (#7508) 2024-08-21 20:25:45 +08:00
app.py chore(api): Introduce Ruff Formatter. (#7291) 2024-08-15 12:54:05 +08:00
commands.py chore(api): Introduce Ruff Formatter. (#7291) 2024-08-15 12:54:05 +08:00
Dockerfile fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 2024-08-26 15:14:05 +08:00
poetry.lock Add Azure AI Studio as provider (#7549) 2024-08-27 09:52:59 +08:00
poetry.toml build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
pyproject.toml Add Azure AI Studio as provider (#7549) 2024-08-27 09:52:59 +08:00
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 2024-07-24 19:36:06 +08:00

Dify Backend API

Usage

Important

In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    cp middleware.env.example middleware.env
    # change the profile to other vector database if you are not using weaviate
    docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  5. Install dependencies

    poetry env use 3.10
    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to debug local async processing, please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh