dify/api
2024-07-07 17:06:47 +08:00
..
configs fix(configs): Update pydantic settings in config files (#6023) 2024-07-07 12:18:15 +08:00
constants Fix/6034 get random order of categories in explore and workflow is missing in zh hant (#6043) 2024-07-07 17:06:47 +08:00
controllers feat(*): Swtich to dify_config. (#6025) 2024-07-06 12:05:13 +08:00
core Modify slack webhook url validation to allow workflow (#6041) (#6042) 2024-07-07 14:09:20 +08:00
docker feat: correctly delete applications using Celery workers (#5787) 2024-07-01 14:21:17 +08:00
events feat: correctly delete applications using Celery workers (#5787) 2024-07-01 14:21:17 +08:00
extensions add support oracle oci object storage (#5616) 2024-07-01 17:21:44 +08:00
fields FR: #4048 - Add color customization to the chatbot (#4885) 2024-06-26 17:51:00 +08:00
libs feat: implement forgot password feature (#5534) 2024-07-05 13:38:51 +08:00
migrations Revert "feat: knowledge admin role" (#6018) 2024-07-05 21:31:34 +08:00
models Revert "feat: knowledge admin role" (#6018) 2024-07-05 21:31:34 +08:00
schedule Feat/dify rag (#2528) 2024-02-22 23:31:57 +08:00
services Fix/6034 get random order of categories in explore and workflow is missing in zh hant (#6043) 2024-07-07 17:06:47 +08:00
tasks feat: implement forgot password feature (#5534) 2024-07-05 13:38:51 +08:00
templates feat: implement forgot password feature (#5534) 2024-07-05 13:38:51 +08:00
tests fix(configs): Update pydantic settings in config files (#6023) 2024-07-07 12:18:15 +08:00
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 2024-06-22 01:34:08 +08:00
.env.example add support oracle oci object storage (#5616) 2024-07-01 17:21:44 +08:00
app.py Chore/remove-unused-code (#5917) 2024-07-04 18:18:26 +08:00
commands.py refactor: Create a dify_config with Pydantic. (#5938) 2024-07-03 21:09:23 +08:00
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) 2024-07-06 14:17:34 +08:00
poetry.lock feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) 2024-07-05 21:11:15 +08:00
poetry.toml build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
pyproject.toml feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) 2024-07-05 21:11:15 +08:00
README.md typo: Update README.md (#5987) 2024-07-04 22:50:27 +08:00

Dify Backend API

Usage

Important

In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    cp middleware.env.example middleware.env
    docker compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  5. Install dependencies

    poetry env use 3.10
    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to debug local async processing, please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh