dify/api/core/agent/cot_agent_runner.py
Yeuoly 14bb0b02ac
Feat/Agent-Image-Processing (#3293)
Co-authored-by: Joel <iamjoel007@gmail.com>
2024-04-10 14:48:40 +08:00

689 lines
29 KiB
Python

import json
import re
from collections.abc import Generator
from typing import Literal, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentPromptEntity, AgentScratchpadUnit
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
SystemPromptMessage,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
class CotAgentRunner(BaseAgentRunner):
_is_first_iteration = True
_ignore_observation_providers = ['wenxin']
def run(self, message: Message,
query: str,
inputs: dict[str, str],
) -> Union[Generator, LLMResult]:
"""
Run Cot agent application
"""
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
agent_scratchpad: list[AgentScratchpadUnit] = []
self._init_agent_scratchpad(agent_scratchpad, self.history_prompt_messages)
# check model mode
if 'Observation' not in app_generate_entity.model_config.stop:
if app_generate_entity.model_config.provider not in self._ignore_observation_providers:
app_generate_entity.model_config.stop.append('Observation')
app_config = self.app_config
# override inputs
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template
instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
prompt_messages = self.history_prompt_messages
# convert tools into ModelRuntime Tool format
prompt_messages_tools: list[PromptMessageTool] = []
tool_instances = {}
for tool in app_config.agent.tools if app_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
# api tool may be deleted
continue
# save tool entity
tool_instances[tool.tool_name] = tool_entity
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# convert dataset tools into ModelRuntime Tool format
for dataset_tool in self.dataset_tools:
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# save tool entity
tool_instances[dataset_tool.identity.name] = dataset_tool
function_call_state = True
llm_usage = {
'usage': None
}
final_answer = ''
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
else:
llm_usage = final_llm_usage_dict['usage']
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids = []
agent_thought = self.create_agent_thought(
message_id=message.id,
message='',
tool_name='',
tool_input='',
messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# update prompt messages
prompt_messages = self._organize_cot_prompt_messages(
mode=app_generate_entity.model_config.mode,
prompt_messages=prompt_messages,
tools=prompt_messages_tools,
agent_scratchpad=agent_scratchpad,
agent_prompt_message=app_config.agent.prompt,
instruction=instruction,
input=query
)
# recalc llm max tokens
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_config.parameters,
tools=[],
stop=app_generate_entity.model_config.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
# check llm result
if not chunks:
raise ValueError("failed to invoke llm")
usage_dict = {}
react_chunks = self._handle_stream_react(chunks, usage_dict)
scratchpad = AgentScratchpadUnit(
agent_response='',
thought='',
action_str='',
observation='',
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
for chunk in react_chunks:
if isinstance(chunk, dict):
scratchpad.agent_response += json.dumps(chunk)
try:
if scratchpad.action:
raise Exception("")
scratchpad.action_str = json.dumps(chunk)
scratchpad.action = AgentScratchpadUnit.Action(
action_name=chunk['action'],
action_input=chunk['action_input']
)
except:
scratchpad.thought += json.dumps(chunk)
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint='',
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=json.dumps(chunk, ensure_ascii=False) # if ensure_ascii=True, the text in webui maybe garbled text
),
usage=None
)
)
else:
scratchpad.agent_response += chunk
scratchpad.thought += chunk
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint='',
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=chunk
),
usage=None
)
)
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
agent_scratchpad.append(scratchpad)
# get llm usage
if 'usage' in usage_dict:
increase_usage(llm_usage, usage_dict['usage'])
else:
usage_dict['usage'] = LLMUsage.empty_usage()
self.save_agent_thought(agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else '',
tool_input={
scratchpad.action.action_name: scratchpad.action.action_input
} if scratchpad.action else '',
tool_invoke_meta={},
thought=scratchpad.thought,
observation='',
answer=scratchpad.agent_response,
messages_ids=[],
llm_usage=usage_dict['usage'])
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = scratchpad.agent_response or ''
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
final_answer = scratchpad.action.action_input if \
isinstance(scratchpad.action.action_input, str) else \
json.dumps(scratchpad.action.action_input)
except json.JSONDecodeError:
final_answer = f'{scratchpad.action.action_input}'
else:
function_call_state = True
# action is tool call, invoke tool
tool_call_name = scratchpad.action.action_name
tool_call_args = scratchpad.action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
self.save_agent_thought(
agent_thought=agent_thought,
tool_name='',
tool_input='',
tool_invoke_meta=ToolInvokeMeta.error_instance(
f"there is not a tool named {tool_call_name}"
).to_dict(),
thought=None,
observation={
tool_call_name: answer
},
answer=answer,
messages_ids=[]
)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
else:
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback
)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
# publish message file
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name,
value=message_file.id,
name=save_as)
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), PublishFrom.APPLICATION_MANAGER)
message_file_ids = [message_file.id for message_file, _ in message_files]
observation = tool_invoke_response
# save scratchpad
scratchpad.observation = observation
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=tool_call_name,
tool_input={
tool_call_name: tool_call_args
},
tool_invoke_meta={
tool_call_name: tool_invoke_meta.to_dict()
},
thought=None,
observation={
tool_call_name: observation
},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# update prompt tool message
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage']
),
system_fingerprint=''
)
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name='',
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[]
)
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
)), PublishFrom.APPLICATION_MANAGER)
def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
-> Generator[Union[str, dict], None, None]:
def parse_json(json_str):
try:
return json.loads(json_str.strip())
except:
return json_str
def extra_json_from_code_block(code_block) -> Generator[Union[dict, str], None, None]:
code_blocks = re.findall(r'```(.*?)```', code_block, re.DOTALL)
if not code_blocks:
return
for block in code_blocks:
json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
yield parse_json(json_text)
code_block_cache = ''
code_block_delimiter_count = 0
in_code_block = False
json_cache = ''
json_quote_count = 0
in_json = False
got_json = False
for response in llm_response:
response = response.delta.message.content
if not isinstance(response, str):
continue
# stream
index = 0
while index < len(response):
steps = 1
delta = response[index:index+steps]
if delta == '`':
code_block_cache += delta
code_block_delimiter_count += 1
else:
if not in_code_block:
if code_block_delimiter_count > 0:
yield code_block_cache
code_block_cache = ''
else:
code_block_cache += delta
code_block_delimiter_count = 0
if code_block_delimiter_count == 3:
if in_code_block:
yield from extra_json_from_code_block(code_block_cache)
code_block_cache = ''
in_code_block = not in_code_block
code_block_delimiter_count = 0
if not in_code_block:
# handle single json
if delta == '{':
json_quote_count += 1
in_json = True
json_cache += delta
elif delta == '}':
json_cache += delta
if json_quote_count > 0:
json_quote_count -= 1
if json_quote_count == 0:
in_json = False
got_json = True
index += steps
continue
else:
if in_json:
json_cache += delta
if got_json:
got_json = False
yield parse_json(json_cache)
json_cache = ''
json_quote_count = 0
in_json = False
if not in_code_block and not in_json:
yield delta.replace('`', '')
index += steps
if code_block_cache:
yield code_block_cache
if json_cache:
yield parse_json(json_cache)
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
"""
fill in inputs from external data tools
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
except Exception as e:
continue
return instruction
def _init_agent_scratchpad(self,
agent_scratchpad: list[AgentScratchpadUnit],
messages: list[PromptMessage]
) -> list[AgentScratchpadUnit]:
"""
init agent scratchpad
"""
current_scratchpad: AgentScratchpadUnit = None
for message in messages:
if isinstance(message, AssistantPromptMessage):
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or 'I am thinking about how to help you',
action_str='',
action=None,
observation=None,
)
if message.tool_calls:
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(message.tool_calls[0].function.arguments)
)
except:
pass
agent_scratchpad.append(current_scratchpad)
elif isinstance(message, ToolPromptMessage):
if current_scratchpad:
current_scratchpad.observation = message.content
return agent_scratchpad
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
agent_prompt_message: AgentPromptEntity,
):
"""
check chain of thought prompt messages, a standard prompt message is like:
Respond to the human as helpfully and accurately as possible.
{{instruction}}
You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid action values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
```
{
"action": $TOOL_NAME,
"action_input": $ACTION_INPUT
}
```
"""
# parse agent prompt message
first_prompt = agent_prompt_message.first_prompt
next_iteration = agent_prompt_message.next_iteration
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
raise ValueError("first_prompt or next_iteration is required in CoT agent mode")
# check instruction, tools, and tool_names slots
if not first_prompt.find("{{instruction}}") >= 0:
raise ValueError("{{instruction}} is required in first_prompt")
if not first_prompt.find("{{tools}}") >= 0:
raise ValueError("{{tools}} is required in first_prompt")
if not first_prompt.find("{{tool_names}}") >= 0:
raise ValueError("{{tool_names}} is required in first_prompt")
if mode == "completion":
if not first_prompt.find("{{query}}") >= 0:
raise ValueError("{{query}} is required in first_prompt")
if not first_prompt.find("{{agent_scratchpad}}") >= 0:
raise ValueError("{{agent_scratchpad}} is required in first_prompt")
if mode == "completion":
if not next_iteration.find("{{observation}}") >= 0:
raise ValueError("{{observation}} is required in next_iteration")
def _convert_scratchpad_list_to_str(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
convert agent scratchpad list to str
"""
next_iteration = self.app_config.agent.prompt.next_iteration
result = ''
for scratchpad in agent_scratchpad:
result += (scratchpad.thought or '') + (scratchpad.action_str or '') + \
next_iteration.replace("{{observation}}", scratchpad.observation or 'It seems that no response is available')
return result
def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
prompt_messages: list[PromptMessage],
tools: list[PromptMessageTool],
agent_scratchpad: list[AgentScratchpadUnit],
agent_prompt_message: AgentPromptEntity,
instruction: str,
input: str,
) -> list[PromptMessage]:
"""
organize chain of thought prompt messages, a standard prompt message is like:
Respond to the human as helpfully and accurately as possible.
{{instruction}}
You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid action values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{{{
"action": $TOOL_NAME,
"action_input": $ACTION_INPUT
}}}}
```
"""
self._check_cot_prompt_messages(mode, agent_prompt_message)
# parse agent prompt message
first_prompt = agent_prompt_message.first_prompt
# parse tools
tools_str = self._jsonify_tool_prompt_messages(tools)
# parse tools name
tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
# get system message
system_message = first_prompt.replace("{{instruction}}", instruction) \
.replace("{{tools}}", tools_str) \
.replace("{{tool_names}}", tool_names)
# organize prompt messages
if mode == "chat":
# override system message
overridden = False
prompt_messages = prompt_messages.copy()
for prompt_message in prompt_messages:
if isinstance(prompt_message, SystemPromptMessage):
prompt_message.content = system_message
overridden = True
break
# convert tool prompt messages to user prompt messages
for idx, prompt_message in enumerate(prompt_messages):
if isinstance(prompt_message, ToolPromptMessage):
prompt_messages[idx] = UserPromptMessage(
content=prompt_message.content
)
if not overridden:
prompt_messages.insert(0, SystemPromptMessage(
content=system_message,
))
# add assistant message
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
prompt_messages.append(AssistantPromptMessage(
content=(agent_scratchpad[-1].thought or '') + (agent_scratchpad[-1].action_str or ''),
))
# add user message
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
prompt_messages.append(UserPromptMessage(
content=(agent_scratchpad[-1].observation or 'It seems that no response is available'),
))
self._is_first_iteration = False
return prompt_messages
elif mode == "completion":
# parse agent scratchpad
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
self._is_first_iteration = False
# parse prompt messages
return [UserPromptMessage(
content=first_prompt.replace("{{instruction}}", instruction)
.replace("{{tools}}", tools_str)
.replace("{{tool_names}}", tool_names)
.replace("{{query}}", input)
.replace("{{agent_scratchpad}}", agent_scratchpad_str),
)]
else:
raise ValueError(f"mode {mode} is not supported")
def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
"""
jsonify tool prompt messages
"""
tools = jsonable_encoder(tools)
try:
return json.dumps(tools, ensure_ascii=False)
except json.JSONDecodeError:
return json.dumps(tools)