dify/api/core/embedding/cached_embedding.py
takatost d069c668f8
Model Runtime (#1858)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: chenhe <guchenhe@gmail.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Yeuoly <admin@srmxy.cn>
2024-01-02 23:42:00 +08:00

96 lines
3.6 KiB
Python

import logging
from typing import List, Optional
import numpy as np
from langchain.embeddings.base import Embeddings
from sqlalchemy.exc import IntegrityError
from core.model_manager import ModelInstance
from extensions.ext_database import db
from libs import helper
from models.dataset import Embedding
logger = logging.getLogger(__name__)
class CacheEmbedding(Embeddings):
def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
self._model_instance = model_instance
self._user = user
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
# use doc embedding cache or store if not exists
text_embeddings = [None for _ in range(len(texts))]
embedding_queue_indices = []
for i, text in enumerate(texts):
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
if embedding:
text_embeddings[i] = embedding.get_embedding()
else:
embedding_queue_indices.append(i)
if embedding_queue_indices:
try:
embedding_result = self._model_instance.invoke_text_embedding(
texts=[texts[i] for i in embedding_queue_indices],
user=self._user
)
embedding_results = embedding_result.embeddings
except Exception as ex:
logger.error('Failed to embed documents: ', ex)
raise ex
for i, indice in enumerate(embedding_queue_indices):
hash = helper.generate_text_hash(texts[indice])
try:
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
vector = embedding_results[i]
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
text_embeddings[indice] = normalized_embedding
embedding.set_embedding(normalized_embedding)
db.session.add(embedding)
db.session.commit()
except IntegrityError:
db.session.rollback()
continue
except:
logging.exception('Failed to add embedding to db')
continue
return text_embeddings
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
# use doc embedding cache or store if not exists
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
if embedding:
return embedding.get_embedding()
try:
embedding_result = self._model_instance.invoke_text_embedding(
texts=[text],
user=self._user
)
embedding_results = embedding_result.embeddings[0]
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
except Exception as ex:
raise ex
try:
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
embedding.set_embedding(embedding_results)
db.session.add(embedding)
db.session.commit()
except IntegrityError:
db.session.rollback()
except:
logging.exception('Failed to add embedding to db')
return embedding_results