mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-12-04 20:28:12 +08:00
333 lines
14 KiB
Python
333 lines
14 KiB
Python
import json
|
|
import logging
|
|
|
|
from typing import Union, Generator, Dict, Any, Tuple, List
|
|
|
|
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
|
|
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
|
|
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage
|
|
from core.model_manager import ModelInstance
|
|
from core.application_queue_manager import PublishFrom
|
|
|
|
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
|
|
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
|
|
ToolProviderCredentialValidationError
|
|
|
|
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
|
|
|
from models.model import Conversation, Message, MessageAgentThought
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
|
def run(self, model_instance: ModelInstance,
|
|
conversation: Conversation,
|
|
message: Message,
|
|
query: str,
|
|
) -> Generator[LLMResultChunk, None, None]:
|
|
"""
|
|
Run FunctionCall agent application
|
|
"""
|
|
app_orchestration_config = self.app_orchestration_config
|
|
|
|
prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or ''
|
|
prompt_messages = self.history_prompt_messages
|
|
prompt_messages = self.organize_prompt_messages(
|
|
prompt_template=prompt_template,
|
|
query=query,
|
|
prompt_messages=prompt_messages
|
|
)
|
|
|
|
# convert tools into ModelRuntime Tool format
|
|
prompt_messages_tools: List[PromptMessageTool] = []
|
|
tool_instances = {}
|
|
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
|
|
try:
|
|
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
except Exception:
|
|
# api tool may be deleted
|
|
continue
|
|
# save tool entity
|
|
tool_instances[tool.tool_name] = tool_entity
|
|
# save prompt tool
|
|
prompt_messages_tools.append(prompt_tool)
|
|
|
|
# convert dataset tools into ModelRuntime Tool format
|
|
for dataset_tool in self.dataset_tools:
|
|
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
# save prompt tool
|
|
prompt_messages_tools.append(prompt_tool)
|
|
# save tool entity
|
|
tool_instances[dataset_tool.identity.name] = dataset_tool
|
|
|
|
iteration_step = 1
|
|
max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1
|
|
|
|
# continue to run until there is not any tool call
|
|
function_call_state = True
|
|
agent_thoughts: List[MessageAgentThought] = []
|
|
llm_usage = {
|
|
'usage': None
|
|
}
|
|
final_answer = ''
|
|
|
|
def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
|
|
if not final_llm_usage_dict['usage']:
|
|
final_llm_usage_dict['usage'] = usage
|
|
else:
|
|
llm_usage = final_llm_usage_dict['usage']
|
|
llm_usage.prompt_tokens += usage.prompt_tokens
|
|
llm_usage.completion_tokens += usage.completion_tokens
|
|
llm_usage.prompt_price += usage.prompt_price
|
|
llm_usage.completion_price += usage.completion_price
|
|
|
|
while function_call_state and iteration_step <= max_iteration_steps:
|
|
function_call_state = False
|
|
|
|
if iteration_step == max_iteration_steps:
|
|
# the last iteration, remove all tools
|
|
prompt_messages_tools = []
|
|
|
|
message_file_ids = []
|
|
agent_thought = self.create_agent_thought(
|
|
message_id=message.id,
|
|
message='',
|
|
tool_name='',
|
|
tool_input='',
|
|
messages_ids=message_file_ids
|
|
)
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
# recale llm max tokens
|
|
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
|
# invoke model
|
|
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
|
prompt_messages=prompt_messages,
|
|
model_parameters=app_orchestration_config.model_config.parameters,
|
|
tools=prompt_messages_tools,
|
|
stop=app_orchestration_config.model_config.stop,
|
|
stream=True,
|
|
user=self.user_id,
|
|
callbacks=[],
|
|
)
|
|
|
|
tool_calls: List[Tuple[str, str, Dict[str, Any]]] = []
|
|
|
|
# save full response
|
|
response = ''
|
|
|
|
# save tool call names and inputs
|
|
tool_call_names = ''
|
|
tool_call_inputs = ''
|
|
|
|
current_llm_usage = None
|
|
|
|
for chunk in chunks:
|
|
# check if there is any tool call
|
|
if self.check_tool_calls(chunk):
|
|
function_call_state = True
|
|
tool_calls.extend(self.extract_tool_calls(chunk))
|
|
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
|
try:
|
|
tool_call_inputs = json.dumps({
|
|
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
|
}, ensure_ascii=False)
|
|
except json.JSONDecodeError as e:
|
|
# ensure ascii to avoid encoding error
|
|
tool_call_inputs = json.dumps({
|
|
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
|
})
|
|
|
|
if chunk.delta.message and chunk.delta.message.content:
|
|
if isinstance(chunk.delta.message.content, list):
|
|
for content in chunk.delta.message.content:
|
|
response += content.data
|
|
else:
|
|
response += chunk.delta.message.content
|
|
|
|
if chunk.delta.usage:
|
|
increase_usage(llm_usage, chunk.delta.usage)
|
|
current_llm_usage = chunk.delta.usage
|
|
|
|
yield chunk
|
|
|
|
# save thought
|
|
self.save_agent_thought(
|
|
agent_thought=agent_thought,
|
|
tool_name=tool_call_names,
|
|
tool_input=tool_call_inputs,
|
|
thought=response,
|
|
observation=None,
|
|
answer=response,
|
|
messages_ids=[],
|
|
llm_usage=current_llm_usage
|
|
)
|
|
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
final_answer += response + '\n'
|
|
|
|
# call tools
|
|
tool_responses = []
|
|
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
|
tool_instance = tool_instances.get(tool_call_name)
|
|
if not tool_instance:
|
|
tool_response = {
|
|
"tool_call_id": tool_call_id,
|
|
"tool_call_name": tool_call_name,
|
|
"tool_response": f"there is not a tool named {tool_call_name}"
|
|
}
|
|
tool_responses.append(tool_response)
|
|
else:
|
|
# invoke tool
|
|
error_response = None
|
|
try:
|
|
tool_invoke_message = tool_instance.invoke(
|
|
user_id=self.user_id,
|
|
tool_paramters=tool_call_args,
|
|
)
|
|
# transform tool invoke message to get LLM friendly message
|
|
tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
|
|
# extract binary data from tool invoke message
|
|
binary_files = self.extract_tool_response_binary(tool_invoke_message)
|
|
# create message file
|
|
message_files = self.create_message_files(binary_files)
|
|
# publish files
|
|
for message_file, save_as in message_files:
|
|
if save_as:
|
|
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
|
|
|
# publish message file
|
|
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
|
|
# add message file ids
|
|
message_file_ids.append(message_file.id)
|
|
|
|
except ToolProviderCredentialValidationError as e:
|
|
error_response = f"Plese check your tool provider credentials"
|
|
except (
|
|
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
|
) as e:
|
|
error_response = f"there is not a tool named {tool_call_name}"
|
|
except (
|
|
ToolParamterValidationError
|
|
) as e:
|
|
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
|
|
except ToolInvokeError as e:
|
|
error_response = f"tool invoke error: {e}"
|
|
except Exception as e:
|
|
error_response = f"unknown error: {e}"
|
|
|
|
if error_response:
|
|
observation = error_response
|
|
tool_response = {
|
|
"tool_call_id": tool_call_id,
|
|
"tool_call_name": tool_call_name,
|
|
"tool_response": error_response
|
|
}
|
|
tool_responses.append(tool_response)
|
|
else:
|
|
observation = self._convert_tool_response_to_str(tool_invoke_message)
|
|
tool_response = {
|
|
"tool_call_id": tool_call_id,
|
|
"tool_call_name": tool_call_name,
|
|
"tool_response": observation
|
|
}
|
|
tool_responses.append(tool_response)
|
|
|
|
prompt_messages = self.organize_prompt_messages(
|
|
prompt_template=prompt_template,
|
|
query=None,
|
|
tool_call_id=tool_call_id,
|
|
tool_call_name=tool_call_name,
|
|
tool_response=tool_response['tool_response'],
|
|
prompt_messages=prompt_messages,
|
|
)
|
|
|
|
if len(tool_responses) > 0:
|
|
# save agent thought
|
|
self.save_agent_thought(
|
|
agent_thought=agent_thought,
|
|
tool_name=None,
|
|
tool_input=None,
|
|
thought=None,
|
|
observation=tool_response['tool_response'],
|
|
answer=None,
|
|
messages_ids=message_file_ids
|
|
)
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
# update prompt messages
|
|
if response.strip():
|
|
prompt_messages.append(AssistantPromptMessage(
|
|
content=response,
|
|
))
|
|
|
|
# update prompt tool
|
|
for prompt_tool in prompt_messages_tools:
|
|
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
|
|
|
iteration_step += 1
|
|
|
|
self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
|
# publish end event
|
|
self.queue_manager.publish_message_end(LLMResult(
|
|
model=model_instance.model,
|
|
prompt_messages=prompt_messages,
|
|
message=AssistantPromptMessage(
|
|
content=final_answer,
|
|
),
|
|
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
|
|
system_fingerprint=''
|
|
), PublishFrom.APPLICATION_MANAGER)
|
|
|
|
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
|
|
"""
|
|
Check if there is any tool call in llm result chunk
|
|
"""
|
|
if llm_result_chunk.delta.message.tool_calls:
|
|
return True
|
|
return False
|
|
|
|
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
|
|
"""
|
|
Extract tool calls from llm result chunk
|
|
|
|
Returns:
|
|
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
|
"""
|
|
tool_calls = []
|
|
for prompt_message in llm_result_chunk.delta.message.tool_calls:
|
|
tool_calls.append((
|
|
prompt_message.id,
|
|
prompt_message.function.name,
|
|
json.loads(prompt_message.function.arguments),
|
|
))
|
|
|
|
return tool_calls
|
|
|
|
def organize_prompt_messages(self, prompt_template: str,
|
|
query: str = None,
|
|
tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
|
|
prompt_messages: list[PromptMessage] = None
|
|
) -> list[PromptMessage]:
|
|
"""
|
|
Organize prompt messages
|
|
"""
|
|
|
|
if not prompt_messages:
|
|
prompt_messages = [
|
|
SystemPromptMessage(content=prompt_template),
|
|
UserPromptMessage(content=query),
|
|
]
|
|
else:
|
|
if tool_response:
|
|
prompt_messages = prompt_messages.copy()
|
|
prompt_messages.append(
|
|
ToolPromptMessage(
|
|
content=tool_response,
|
|
tool_call_id=tool_call_id,
|
|
name=tool_call_name,
|
|
)
|
|
)
|
|
|
|
return prompt_messages |