mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-12-03 03:38:08 +08:00
3241e4015b
Co-authored-by: jyong <718720800@qq.com>
112 lines
3.8 KiB
Python
112 lines
3.8 KiB
Python
"""Base classes for LLM-powered router chains."""
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Optional, Type, cast, NamedTuple
|
|
|
|
from langchain.base_language import BaseLanguageModel
|
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
from langchain.chains.base import Chain
|
|
from pydantic import root_validator
|
|
|
|
from langchain.chains import LLMChain
|
|
from langchain.prompts import BasePromptTemplate
|
|
from langchain.schema import BaseOutputParser, OutputParserException
|
|
|
|
from libs.json_in_md_parser import parse_and_check_json_markdown
|
|
|
|
|
|
class Route(NamedTuple):
|
|
destination: Optional[str]
|
|
next_inputs: Dict[str, Any]
|
|
|
|
|
|
class LLMRouterChain(Chain):
|
|
"""A router chain that uses an LLM chain to perform routing."""
|
|
|
|
llm_chain: LLMChain
|
|
"""LLM chain used to perform routing"""
|
|
|
|
@root_validator()
|
|
def validate_prompt(cls, values: dict) -> dict:
|
|
prompt = values["llm_chain"].prompt
|
|
if prompt.output_parser is None:
|
|
raise ValueError(
|
|
"LLMRouterChain requires base llm_chain prompt to have an output"
|
|
" parser that converts LLM text output to a dictionary with keys"
|
|
" 'destination' and 'next_inputs'. Received a prompt with no output"
|
|
" parser."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Will be whatever keys the LLM chain prompt expects.
|
|
|
|
:meta private:
|
|
"""
|
|
return self.llm_chain.input_keys
|
|
|
|
def _validate_outputs(self, outputs: Dict[str, Any]) -> None:
|
|
super()._validate_outputs(outputs)
|
|
if not isinstance(outputs["next_inputs"], dict):
|
|
raise ValueError
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, Any]:
|
|
output = cast(
|
|
Dict[str, Any],
|
|
self.llm_chain.predict_and_parse(**inputs),
|
|
)
|
|
return output
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, **kwargs: Any
|
|
) -> LLMRouterChain:
|
|
"""Convenience constructor."""
|
|
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
|
return cls(llm_chain=llm_chain, **kwargs)
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
return ["destination", "next_inputs"]
|
|
|
|
def route(self, inputs: Dict[str, Any]) -> Route:
|
|
result = self(inputs)
|
|
return Route(result["destination"], result["next_inputs"])
|
|
|
|
|
|
class RouterOutputParser(BaseOutputParser[Dict[str, str]]):
|
|
"""Parser for output of router chain int he multi-prompt chain."""
|
|
|
|
default_destination: str = "DEFAULT"
|
|
next_inputs_type: Type = str
|
|
next_inputs_inner_key: str = "input"
|
|
|
|
def parse(self, text: str) -> Dict[str, Any]:
|
|
try:
|
|
expected_keys = ["destination", "next_inputs"]
|
|
parsed = parse_and_check_json_markdown(text, expected_keys)
|
|
if not isinstance(parsed["destination"], str):
|
|
raise ValueError("Expected 'destination' to be a string.")
|
|
if not isinstance(parsed["next_inputs"], self.next_inputs_type):
|
|
raise ValueError(
|
|
f"Expected 'next_inputs' to be {self.next_inputs_type}."
|
|
)
|
|
parsed["next_inputs"] = {self.next_inputs_inner_key: parsed["next_inputs"]}
|
|
if (
|
|
parsed["destination"].strip().lower()
|
|
== self.default_destination.lower()
|
|
):
|
|
parsed["destination"] = None
|
|
else:
|
|
parsed["destination"] = parsed["destination"].strip()
|
|
return parsed
|
|
except Exception as e:
|
|
raise OutputParserException(
|
|
f"Parsing text\n{text}\n of llm router raised following error:\n{e}"
|
|
)
|